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Abstract

We introduce quantum history states and their mathematical framework, thereby
reinterpreting and extending the consistent histories approach to quantum theory.
Through thought experiments, we demonstrate that our formalism allows us to an-
alyze a quantum version of history in which we reconstruct the past by observations.
In particular, we can pass from measurements to inferences about “what happened” in
a way that is sensible and free of paradox. Our framework allows for a richer under-
standing of the temporal structure of quantum theory, and we construct history states
that embody peculiar, non-classical correlations in time.

Many quantities of physical interest are more naturally expressed in terms of histories
than in terms of “observables” in the traditional sense, i.e. operators in Hilbert space that

act at a particular time. The accumulated phase exp i
2́

1

dt~v · ~A of a particle moving in

an electromagnetic potential, or its accumulated proper time, are simple examples. We
may ask: Having performed a measurement of this more general, history-dependent sort
of observable, what have we learned? For conventional observables, the answer is that
we learn our system is in a particular subspace of Hilbert space, that is the eigenspace
corresponding to the observable’s measured value. Here we propose a general framework
for formulating and interpreting history-dependent observables.

Over the last thirty years, the quantum theory of histories has been approached from
several directions. In the 1980’s, Griffiths developed a mathematically precise formulation
of the Copenhagen interpretation [1]. Griffiths was able to elucidate seemingly paradoxical
experiments by enforcing a consistent interpretation of quantum evolution. Omnès, Gell-
Mann, Hartle, Isham, and Linden, among others, enriched the mathematics and physics
of Griffith’s theory of “consistent histories” [2]-[11]. In particular, Gell-Mann and Hartle
focused on applying consistent histories to decoherence and quantum cosmology, while
Isham and Linden’s work has uncovered deep mathematical structure at foundations of
quantum mechanics [12].
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Histories are of course an explicit element of Feynman’s path integral. In the early
1990’s, Farhi and Gutmann developed a generalized theory of the path integral, which
clarifies what is meant by the path integral “trajectories” of a spin system, or any other
system with non-classical features [13].

Here we will construct a formal structure that builds on these two lines of work, and il-
luminates the question posed in our first paragraph. We will also analyze several instructive
examples, where we apply the formalism to analyze quasi-realistic thought experiments.

1 Mathematics of History States

1.1 History Space

We will work with a vector space that allows for access to the evolution of a system at
multiple times. This vector space is called the history Hilbert space H, and is defined
by the tensor product from right to left of the admissible Hilbert spaces of our system at
sequential times. Explicitly, for n times t1 < · · · < tn, we have

H := Htn � · · · � Ht1 (1)

where Hti is the admissible Hilbert space at time ti. Restricting the admissible Hilbert
spaces Ht1 and Htn corresponds to pre- and post-selection respectively.

In this paper, we will be primarily concerned with history Hilbert spaces defined over
a discrete set of times. It is possible to work with history Hilbert spaces over a continuum
of times, but doing so requires the full apparatus of the Farhi-Gutmann path integral
[13]. The history Hilbert space H is also equipped with bridging operators T (tj , ti), where
T (tj , ti) : Hti → Htj . These bridging operators encode unitary time evolution.

1.2 History States

We would like to define a mathematical object that encodes the evolution of our system
through time – a notion of “quantum state” for history space – that supports an inner
product and probability interpretation. One might at first think that an element of H such
as |ψ(tn)〉� · · ·� |ψ(t1)〉 would be the desired mathematical object, but a different concept
appears more fruitful. For us, “history states” are elements of the linear space Proj(H)
spanned by projectors from H → H. Henceforth, we will call Proj(H) the “history state
space.”

For example, if H is the history space of a spin-1/2 particle at three times t1 < t2 < t3,
then an example history state is

[z−]� [x+]� [z+] (2)

where we use the notation [z+] := |z+〉〈z+|. The history state in Eqn. (2) can be considered
as a quantum trajectory: the particle is spin up in the z-direction at time t1, spin-up in
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the x-direction at time t2, and spin-down in the z-direction at time t3. Since Proj(H) is a
complex vector space, another example of a history state is

α [z−]� [x+]� [z+] + β [z+]� [x−]� [z+] (3)

for complex coefficients α and β. The history state in Eqn. (3) is a superposition of the
history states [z−] � [x+] � [z+] and [z+] � [x−] � [z+]. It can be interpreted, roughly, as
meaning that the particle takes both quantum trajectories, but with different amplitudes.

Precise physical interpretation of history states like the one in Eqn. (3) requires more
structure. For example, it is not obviously true (and usually is false) that one can measure
the particle to take the trajectory [z−]� [x+]� [z+] with probability proportional to |α|2,
or the other trajectory with probability proportional to |β|2. To discuss probabilities,
generalizing the Born rule, we need an inner product. Furthermore, we have not yet
defined which mathematical objects correspond to measurable quantities.

For a history space H with n times t1 < · · · < tn, a general history state takes the form

|Ψ) =
∑
i

αi[ai(tn)]� · · · � [ai(t1)] (4)

where each [ai(tj)] is a one-dimensional projector [ai(tj)] : Htj → Htj , and αi ∈ C. We have
decorated the history state with a soft ket | · ) which is suggestive of a wave function. In
our theory, a history state is the natural generalization of a wave function, and has similar
algebraic properties. Note that such sums of products of projectors will also accommodate
products of hermitean operators more generally.

1.3 Inner Product

In defining a physically appropriate inner product between history states the K operator,
defined by

K|Ψ) =
∑
i

αiK([ai(tn)]� · · · � [ai(t1)]) (5)

=
∑
i

αi[ai(tn)]T (tn, tn−1)[ai(tn−1)]� · · · � [ai(t2)]T (t2, t1)[ai(t1)] (6)

where T (tj , ti) is the bridging operator associated with the history space, plays a central
role. Note that K maps a history state in Proj(H) to an operator which takes Ht1 → Htn .

Using the K operator, we equip history states with the positive semi-definite inner
product [1]

(Φ|Ψ) := Tr
[
(K|Φ))†K|Ψ)

]
(7)

This inner product induces a semi-norm on history states, and we call (Ψ|Ψ) the “weight” of
|Ψ). It reflects the probability of |Ψ) occurring. Note that the inner product is degenerate,
in the sense that (Ψ|Ψ) = 0 does not imply that |Ψ) = 0.
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We say that a history state |Ψ) is normalized if (Ψ|Ψ) = 1. If |Ψ) has non-zero weight,
then

|Ψ) =
|Ψ)√
(Ψ|Ψ)

(8)

is normalized. We will use this “bar” notation throughout the rest of the paper.
At this point, an example may be welcome. If H is the history space of a spin-1/2

particle at three times t1 < t2 < t3 equipped with a trivial bridging operator T = 1, then

K
(
[z−]� [x+]� [z+]

)
=

1

2
|z−〉〈z+| (9)

Let us interpret the factor of 1/2 on the right-hand side of the above equation. Since the
bridging operator for the history space is the identity, any particle which is spin-up in the
z-direction at time t1 will continue to be in that state at times t2 and t3. However, the
history state in Equation (9) is [z−] � [x+] � [z+] which appears to subvert the unitary
evolution imposed by the bridging operator. This subversion comes at a cost, which is the
amplitude 1/2. We will later see that histories which do not follow unitary evolution have
a suppressed probability of being measured, with the suppression factor proportional to
the absolute square of the coefficient generated by the K operator. In the case of Equation
(9), the “suppression” is a factor of |1/2|2 = 1/4.

1.4 Families

We will be interested in subspaces that both admit an orthogonal basis (possibly including
history states of zero norm), and contain the history state 1tn�· · ·�1t1 , which corresponds
to a system being in a superposition of all possible states at each time. The orthogonal set
of history states which spans such a subspace will be called a “family” of history states.
More formally:

Definition We say {|Y i
)} is a family of history states if

(1) (Y
i|Y j

) = 0 for i 6= j and (Y
i|Y i

) = 0 or 1, and

(2)
∑

i ci |Y
i
) = 1tn � · · · � 1t1 for some complex ci.

Requirement (1) is Griffiths’ “strong consistent histories condition” [1]-[3].
Contrary to earlier work, we see no reason to impose the requirement that history

states, regarded as operators, commute. It is not essential that history states commute

since they are not themselves observables. However, projectors of the form |Y i
)(Y

i| are

observables. By orthogonality, [|Y i
)(Y

i|, |Y j
)(Y

j |] = 0 for all i, j, so commutativity of the
corresponding observables is automatic. We also remark that a family of history states
contains at most dim(Htn) · dim(Ht1) history states with non-zero norm [14].

Now we will work through an example. Let us consider again the history space of a
spin-1/2 particle at three times t1 < t2 < t3 equipped with a trivial bridging operator.
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According to our definition,

|Y 1
) =
√

2 [z+]� [x+]� [z+] +
√

2 [z−]� [x−]� [z+]

|Y 2
) =
√

2 [z−]� [x+]� [z+] +
√

2 [z+]� [x−]� [z+]

|Y 3
) =
√

2 [z+]� [x+]� [z−] +
√

2 [z−]� [x−]� [z−]

|Y 4
) =
√

2 [z−]� [x+]� [z−] +
√

2 [z+]� [x−]� [z−] (10)

forms a family of history states. This family has the curious property that each history
state is “entangled” in the sense that it is comprised of a linear combination of history states
that is inseparable. We interpret each history state as an entangled quantum trajectory.

Let us explore some of the history states that live in span{|Y 1
), |Y 2

), |Y 3
), |Y 4

)}. One
such history state is |Ψ) = [z+]� [z+]� [z+], which can be written as

|Ψ) =
1√
2
|Y 1

) +
1√
2
|Y 2

) (11)

Equation (11) implies that a state which at time t1 is spin up in the z-direction and

evolves in time by the trivial bridging operator can be measured to be the history |Y 1
)

with probability |1/
√

2|2 = 1/2, or the history |Y 2
) with probability |1/

√
2|2 = 1/2. Later

we will outline how to make such a measurement.
Another interesting history state in span{|Y 1

), |Y 2
), |Y 3

), |Y 4
)} is

|Φ) = α [z+]� [z+]� [z+] + β [z−]� [z−]� [z−] (12)

=
α√
2
|Y 1

) +
α√
2
|Y 2

) +
β√
2
|Y 3

) +
β√
2
|Y 4

) (13)

which is normalized if |α|2 + |β|2 = 1. The history state |Φ) is itself an entangled quantum
trajectory. We will argue that it is possible to measure such objects.

1.5 Operators and Observables

Having provided several examples of history states, we will now briefly discuss operators on
history states. In particular, we consider operators Â which are linear maps from history
states to history states. In general, any operator of the form

Â : [ψ(tn)]� · · · � [ψ(t1)] 7−→
∑
i

αiA
tn
i [ψ(tn)](Atn

i )† � · · · �At1
i [ψ(t1)](A

t1
i )† (14)

where all A
tj
i are linear operators, is a linear operator on history states.

As in standard quantum theory, not all operators correspond to observables. History
state operators that correspond to observables are those which are both hermitean, and
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whose eigenvectors can be extended to define a family. For example, given a family of

history states {|Y i
)}, all history state operators of the form

B̂ =
∑
i

bi |Y
i
)(Y

i| (15)

for bi ∈ R correspond to observables. A measurement of the normalized history state

|Ψ) by the observable B̂ gives the result bi with probability |(Ψ|Y i
)|2 (or, for degenerate

eigenvalues, the appropriate sum over such terms).
As another example, consider the history space of a spin-1/2 particle at two times

t1 < t2 equipped with a trivial bridging operator. We will consider the operator σy � σx
which induces a linear map on history states by

Ĉ|Ψ) =
∑
i

αi σy[ψ(t2)]σ
†
y � σx[ψ(t1)]σ

†
x (16)

The Ĉ operator corresponds to measuring the spin-1/2 particle at time t1 in the x-basis, and
then measuring at time t2 in the y-basis. The eigenhistory states of Ĉ form a family, namely
{
√

2 [y±] � [x±]} which are the history state “outputs” of the sequence of measurements.
More generically, if our history space has a larger number of times, the linear map on
history states induced by

1� · · · � 1� σy � 1� · · · � 1� σx � 1� · · · � 1 (17)

corresponds to measuring at some particular time in the x-basis followed by measuring at
some later time in the y-basis.

We see that one way of thinking about measurements at one or more times is that they
correspond to particular families of history states in which the history states at certain
times are in eigenstates of observables. One can naturally consider measurements at one
or more times that project onto multi-dimensional spaces, which allows one to control the
complexity of a corresponding family of eigenhistory states.

For a more elaborate example of history state observables, we continue to consider a
spin-1/2 particle at two times t1 < t2 equipped with a trivial bridging operator. In addition
to σy � σx, we will also consider σx � σz which induces a linear map on history states by

D̂|Ψ) =
∑
i

αi σx[ψ(t2)]σ
†
x � σz[ψ(t1)]σ

†
z (18)

The restrictions of σy�σx and σx�σz to either t1 or t2 do not commute. However, σx�σz
and σz � σy themselves do commute, which reflects their non-trivial temporal structure.

Thus, σx � σz and σz � σy have simultaneous eigenvectors, and correspondingly Ĉ and

D̂ have simultaneous eigenhistory states which in fact form a family. The simultaneous
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eigenvectors of σy � σx and σx � σz are

|Ψ1〉 = − i
2
|z+〉 � |z+〉 − 1

2
|z+〉 � |z−〉 − i

2
|z−〉 � |z+〉+

1

2
|z−〉 � |z−〉 (19)

|Ψ2〉 =
i

2
|z+〉 � |z+〉 − 1

2
|z+〉 � |z−〉+

i

2
|z−〉 � |z+〉+

1

2
|z−〉 � |z−〉 (20)

|Ψ3〉 = − i
2
|z+〉 � |z+〉+

1

2
|z+〉 � |z−〉+

i

2
|z−〉 � |z+〉+

1

2
|z−〉 � |z−〉 (21)

|Ψ4〉 =
i

2
|z+〉 � |z+〉+

1

2
|z+〉 � |z−〉 − i

2
|z−〉 � |z+〉+

1

2
|z−〉 � |z−〉 (22)

and thus the simultaneous eigenhistory states of Ĉ and D̂ are

|Ψ1) =
√

2 |Ψ1〉〈Ψ1| (23)

|Ψ2) =
√

2 |Ψ2〉〈Ψ2| (24)

|Ψ3) =
√

2 |Ψ3〉〈Ψ3| (25)

|Ψ4) =
√

2 |Ψ4〉〈Ψ4| (26)

Indeed, these history states are orthonormal and since
∑

i
1√
2
|Ψi) = 1t2 � 1t1 we have a

family.
Now that we have developed the necessary mathematical machinery, we will apply our

framework to several model systems through quasi-realistic thought experiments. Our goal
is to show that the mathematical machinery leads to physically sensible results.

2 Examples and Applications

2.1 Mach-Zehnder Interferometer

Consider the Mach-Zehnder interferometer in Figure 1:
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Figure 1. Diagram of a Mach-Zehnder interferometer.

The unitary time evolution of the system is

|0a〉 −→ 1√
2

(|1b〉+ |1c〉) −→ 1√
2

(|2b〉+ |2c〉) −→ |3b〉 −→ |4b〉 (27)

which displays interference. Note that the 50-50 beamsplitters act as the Hadamard matrix

1√
2

[
1 1
1 −1

]
on the spatial modes. Equation (27) induces a history space of five times

t0 < t1 < t2 < t3 < t4, with a bridging operator which implements the unitary evolution
of the system. Let us work with the family of history states

|α1) = 2 ([4c]� 1t3 � [2b]� 1t1 � [0a] + [4b]� 1t3 � [2c]� 1t1 � [0a]) (28)

|α2) = 2 ([4c]� 1t3 � [2c]� 1t1 � [0a] + [4b]� 1t3 � [2b]� 1t1 � [0a]) (29)

where [0a] = 1t0 since Ht0 = span{|0a〉}. Notice that each history state is an entangled
quantum trajectory. We have

1√
2
|α1) +

1√
2
|α2) = 1t4 � 1t3 � 1t2 � 1t1 � 1t0 (30)

where the right-hand side corresponds to the history state in which the particle evolves
unitarily, because we are not imposing in which state the particle should be at any time.
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Equation (30) implies that we can measure a particle traveling through the Mach-Zehnder
interferometer to be in the history state |α1) with probability |1/

√
2|2 = 1/2, or |α2) with

probability |1/
√

2|2 = 1/2. We will now show how to make such a measurement.
To measure the unitary evolution of the Mach-Zehnder interferometer with respect to

the |α1), |α2) family, we couple the system at time t0 to an auxiliary qubit which lives in
the space span{|0〉, |1〉}. We then evolve the original system in time while the auxiliary
qubit goes along for the ride, and when appropriate, apply a CNOT gate (treating the
auxiliary qubit as the target qubit) so that we can “mark” histories. The key point is that
we are not allowed to meddle with the unitary evolution of the original system by imposing
additional orthogonality relations via the auxiliary qubit. For example, since at time t1
the unitary evolution of the original system gives 1√

2
(|1b〉 + |1c〉), it is admissible for the

auxiliary qubit to interact with the system by

1√
2

(|1b〉+ |1c〉)⊗ |0〉 or
1√
2

(|1b〉 ⊗ |0〉+ |1c〉 ⊗ |1〉) (31)

but not
1

2
|1b〉 ⊗ |0〉+

(
1

2
|1b〉+

1√
2
|1c〉

)
⊗ |1〉 (32)

since the latter decoheres the system by imposing additional orthogonality.
The desired evolution of the combined Mach-Zehnder-qubit system is as follows:

|0a〉 ⊗ |0〉 T (t1,t0)⊗1−−−−−−−−−→ 1√
2

(|1b〉 ⊗ |0〉+ |1c〉 ⊗ |0〉) (33)

T (t2,t1)⊗1, U1−−−−−−−−−→ 1√
2

(|2b〉 ⊗ |0〉+ |2c〉 ⊗ |1〉) (34)

T (t3,t2)⊗1−−−−−−−−−→ 1√
2

(
1√
2

(|3b〉+ |3c〉)⊗ |0〉+
1√
2

(|3b〉 − |3c〉)⊗ |1〉
)

(35)

T (t4,t3)⊗1, U2−−−−−−−−−→ 1√
2

(
1√
2

(|4b〉 − |4c〉)⊗ |0〉+
1√
2

(|4b〉+ |4c〉)⊗ |1〉
)

(36)

where we have

U1 = |2b〉〈2b| ⊗ |0〉〈0|+ |2b〉〈2b| ⊗ |1〉〈1|+ |2c〉〈2c| ⊗ |0〉〈1|+ |2c〉〈2c| ⊗ |1〉〈0| (37)

U2 = |4b〉〈4b| ⊗ |0〉〈0|+ |4b〉〈4b| ⊗ |1〉〈1|+ |4c〉〈4c| ⊗ |0〉〈1|+ |4c〉〈4c| ⊗ |1〉〈0| (38)

In this case, if we measure the auxiliary qubit at the final time t4 and detect |0〉, then the
system has been in the history state |α1), whereas if we detect |1〉, the system has been in
the history state |α2). Note that the probability amplitude of measuring the system to be
in either |α1) or |α2) is 1/

√
2 which is reflected in Equation (30). Furthermore, measuring

the auxiliary qubit at time t4 collapses the history state of the system to either |α1) or
|α2), each with probability 1/2.
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Note that at the final time t4, it is not necessary to measure the auxiliary qubit in the
{|0〉, |1〉} basis. Instead, we could measure the qubit in any other basis, such as the{

|+〉 =
1√
3
|0〉+ i

√
2

3
|1〉 , |−〉 =

√
2

3
|0〉 − i√

3
|1〉
}

(39)

basis. In the {|+〉, |−〉} basis, Equation (36) takes the form[(
1

2
√

3
− i√

6

)
|4b〉 −

(
1

2
√

3
+

i√
6

)
|4c〉

]
⊗ |+〉

+

[(
1√
6

+
i

2
√

3

)
|4b〉+

(
− 1√

6
+

i

2
√

3

)
|4c〉

]
⊗ |−〉 (40)

Measuring |+〉 at time t4 corresponds to measuring the history state

1√
3
|α1) + i

√
2

3
|α2) (41)

and likewise |−〉 corresponds to history state√
2

3
|α1)− i√

3
|α2) (42)

Note that Equations (41) and (42) together form a family of history states for the Mach-
Zehnder system, which is a linear transformation of our original {|α1), |α2)} family. If
two families of history states are related by a linear transformation, we say that they are
“compatible.”

It is possible to measure a system in differing compatible families sequentially. For
example, say that we want to measure the Mach-Zehnder system with respect to the
{|α1), |α2)} family followed by the family described by Equations (41) and (42). To do
this, we tensor two auxiliary qubits to the initial state of the system, and evolve the
system and auxiliary qubits in the same manner as before. At time t4, we end up with

1√
2

(
1√
2

(|4b〉 − |4c〉)⊗ |0〉 ⊗ |0〉+
1√
2

(|4b〉+ |4c〉)⊗ |1〉 ⊗ |1〉
)

(43)

If we measure the first auxiliary qubit in the {|0〉, |1〉} basis, then the system collapses to
either |α1) or |α2) with equal probability. If we then measure the second qubit in the basis
from Equation (39), the effect is to measure either the collapsed history state |α1) or |α2)
in the compatible family described by Equations (41) and (42).
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2.2 Spin-1/2 Particle

Once again, we consider the history space of a spin-1/2 particle at three times t1 < t2 < t3
with a trivial bridging operator. We will also impose that the particle be spin up in the
z-direction at time t1. Taking inspiration from Equation (10), we see that

|β1) =
√

2 [z+]� [x+]� [z+] +
√

2 [z−]� [x−]� [z+] (44)

|β2) =
√

2 [z+]� [x−]� [z+] +
√

2 [z−]� [x+]� [z+] (45)

is a family of history states for the system. In order to measure the unitary evolution of

the system with respect to the |β1), |β2) family, we couple an auxiliary qubit to the system
at time t1 and evolve the system as follows:

|z+〉 ⊗ |0〉 T (t2,t1)⊗1, U3−−−−−−−−−→ 1√
2

(
|x+〉 ⊗ |0〉+ |x−〉 ⊗ |1〉

)
(46)

T (t3,t2)⊗1, U4−−−−−−−−−→ 1√
2

(
1√
2

(
|z+〉 − |z−〉

)
⊗ |0〉+

1√
2

(
|z+〉+ |z−〉

)
⊗ |1〉

)
(47)

where we have

U3 = |x+〉〈x+| ⊗ |0〉〈0|+ |x+〉〈x+| ⊗ |1〉〈1|+ |x−〉〈x−| ⊗ |0〉〈1|+ |x−〉〈x−| ⊗ |1〉〈0| (48)

U4 = |z+〉〈z+| ⊗ |0〉〈0|+ |z+〉〈z+| ⊗ |1〉〈1|+ |z−〉〈z−| ⊗ |0〉〈1|+ |z−〉〈z−| ⊗ |1〉〈0| (49)

If at the final time we measure the auxiliary qubit to be in the state |0〉, then the system

has been in the history state |β1), and likewise if we measure the auxiliary qubit to be in

the state |1〉, then the system has been in the history state |β2).

2.3 Decaying Particle Examples

2.3.1 A Single Decaying Particle

Consider for simplicity a particle that will either decay at time t1 with amplitude α or t2
with amplitude β. If the particle decays at time t1, it will flip an auxiliary state coupled
to the system from |0〉 to |1〉. Similarly, if the particle decays at time t2, it will flip the
auxiliary state from |0〉 to |2〉. We assume that the auxiliary state otherwise evolves trivially
in time. The history state of the system is

α |decayed at t1)⊗ |1) + β |decayed at t2)⊗ |2) (50)

where |1) = [1] � · · · � [1] and |2) = [2] � · · · � [2]. But if we measure the auxiliary state
after time t2 in the 1√

2
(|1〉 ± |2〉) basis and post-select on measuring 1√

2
(|1〉 + |2〉), then

tracing out the auxiliary state we are left with the history state

α |decayed at t1) + β |decayed at t2) (51)

which is an entangled quantum trajectory.
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2.3.2 Two Decaying Particles

If we extend the model above to two separate decaying particles and one auxiliary state
for each particle, then the history state of the system is

α2 |decayed at t1)|decayed at t1)⊗ |1)|1) + αβ |decayed at t1)|decayed at t2)⊗ |1)|2)

+ βα |decayed at t2)|decayed at t1)⊗ |2)|1) + β2 |decayed at t2)|decayed at t2)⊗ |2)|2)
(52)

Measuring the auxiliary states after time t2 in the
{

1√
2
(|1〉|2〉+ |2〉|1〉), ...

}
basis, post-

selecting on measuring 1√
2
(|1〉|2〉+ |2〉|1〉), and then tracing out the auxiliary states, we are

left with the entangled history state

1

|α|4 + |β|4

(
α2 |decayed at t1)|decayed at t2) + β2 |decayed at t2)|decayed at t1)

)
(53)

2.4 General Observations

It is clear from the above examples that the “time-evolution” picture with the conventional
“−→” notation does not make the interplay between history states obvious. Our theory
of history states allows us to manipulate time correlations and time entanglement in a
way that is totally non-transparent otherwise. We also note that the most generic type of
CNOT operator has the form

U =
∑
i

|i〉〈i| ⊗ Ui (54)

where {|i〉} is an orthonormal basis for our system of interest at some particular time, and
each Ui is a unitary operator that acts on auxiliary qubits. These types of CNOT operators
allow us to “mark” and “unmark” histories. If we choose the operators carefully, so as not
to tamper with the unitary evolution of our system of interest by imposing, through the
auxiliary qubits, additional orthogonality relations, we can use this construction to render
the entities we have defined as history observables to be observable, concretely.

3 An Example of Extreme History Entanglement

In this section we consider an extreme example of history entanglement involving two
particles. We will utilize the history space of two spin-1/2 particles at three times

12



t1 < t2 < t3, equipped with a trivial bridging operator. Then the history states

|Z1
) = 2 [z+, z+]� [x+,1]� [z+, x+] + 2 [z+, z−]� [x+,1]� [z−, x+] (55)

|Z2
) = 2 [z+, z+]� [x−,1]� [z+, x+] + 2 [z+, z−]� [x−,1]� [z−, x+] (56)

|Z3
) = 2 [z+, z+]� [x+,1]� [z+, x−] + 2 [z+, z−]� [x+,1]� [z−, x−] (57)

|Z4
) = 2 [z+, z+]� [x−,1]� [z+, x−] + 2 [z+, z−]� [x−,1]� [z−, x−] (58)

|Z5
) = 2 [z+, z+]� [x+,1]� [z−, x+] + 2 [z+, z−]� [x+,1]� [z+, x+] (59)

|Z6
) = 2 [z+, z+]� [x−,1]� [z−, x+] + 2 [z+, z−]� [x−,1]� [z+, x+] (60)

|Z7
) = 2 [z+, z+]� [x+,1]� [z−, x−] + 2 [z+, z−]� [x+,1]� [z+, x−] (61)

|Z8
) = 2 [z+, z+]� [x−,1]� [z−, x−] + 2 [z+, z−]� [x−,1]� [z+, x−] (62)

|Z9
) = 2 [z−, z+]� [x+,1]� [z+, x+] + 2 [z−, z−]� [x+,1]� [z−, x+] (63)

|Z10
) = 2 [z−, z+]� [x−,1]� [z+, x+] + 2 [z−, z−]� [x−,1]� [z−, x+] (64)

|Z11
) = 2 [z−, z+]� [x+,1]� [z+, x−] + 2 [z−, z−]� [x+,1]� [z−, x−] (65)

|Z12
) = 2 [z−, z+]� [x−,1]� [z+, x−] + 2 [z−, z−]� [x−,1]� [z−, x−] (66)

|Z13
) = 2 [z−, z+]� [x+,1]� [z−, x+] + 2 [z−, z−]� [x+,1]� [z+, x+] (67)

|Z14
) = 2 [z−, z+]� [x−,1]� [z−, x+] + 2 [z−, z−]� [x−,1]� [z+, x+] (68)

|Z15
) = 2 [z−, z+]� [x+,1]� [z−, x−] + 2 [z−, z+]� [x+,1]� [z+, x+] (69)

|Z16
) = 2 [z−, z+]� [x−,1]� [z−, x−] + 2 [z−, z−]� [x−,1]� [z+, x−] (70)

form a family.
Each history state is an entangled quantum trajectory, and the entanglement encodes

novel physical behavior. Consider, specifically,

|Z1
) = 2 [z+, z+]� [x+,1]� [z+, x+] + 2 [z+, z−]� [x+,1]� [z−, x+]

This history state exhibits “time entanglement”: Measuring the first particle at time t1
does not determine the state of the second particle until time t3. We have that the state of
particle 1 at time t1 is the same as the state of particle 2 at time t3 – behavior in time similar
to that which a Bell state exhibits in space. Using constructions similar to the ones in the
previous section, it is possible to measure such a history state. Such extreme entanglement
exemplifies the possibility of new structures emerging from the quantum theory of history
states.
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4 Relation to Operator Calculus

In the 1950s, Feynman introduced a generalized operator calculus, which enables useful
algebraic manipulations in quantum mechanics, and ultimately quantum field theory [15].
In this brief section we will show that Feynman’s operator calculus finds a natural home
in history space.

LetA be the space of operators on some space X , whereA includes the identity operator
1. We define an indexed operator of order n as an element of the space

A⊗ · · · ⊗ A ⊗A︸ ︷︷ ︸
n of these

(71)

If α ∈ A, we denote by αi

αi := 1⊗ · · · ⊗ 1⊗ α⊗ 1⊗ · · · ⊗ 1 (72)

where the α operator is in the ith spot from the right. Note that αi is an indexed operator
of order n. Next, we define the map

K : A⊗ · · · ⊗ A ⊗A −→ A (73)

by
K : γ ⊗ · · ·β ⊗ α 7−→ γ · · ·βα (74)

which resembles the action of the K operator in the previous sections. This gives us

K(αiβj) =


βα if i < j

αβ if i = j

αβ if i > j

(75)

which is the heart of Feynman’s operator calculus. We can interpret Feynman’s expressions

f(αi + βj) “ = ” some combination of α′s and β′s

for some function f according to

f(αi + βj) “ = ” Kf(αi + βj) (76)

5 Conclusion

The framework of history states elucidates the temporal structure of quantum theory and
makes sense of an expanded class of observables which act on quantum trajectories. We
have constructed examples of entangled history states with non-classical correlations in
time which can be experimentally realized. It would be very interesting to connect these
ideas to the mathematical theory of (classical) inference and causality, which has matured
in recent years [16].
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