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Abstract

Intensity interferometry (Hanbury Brown - Twiss effect) is an interesting and use-
ful concept that is usually presented as a manifestation of the quantum statistics of
indistinguishable particles. Here, by exploiting possibilities for projection and entan-
glement, we substantially widen the scope of its central idea, removing the requirement
of indistinguishability. We thereby potentially gain access to a host of new observables,
including subtle polarization correlations and entanglement itself. Our considerations
also shed light on the physical significance of superselection.

Viewed from the perspective of quantum theory, interferometry is the exploitation of
effects that arise when there are several ways to evolve from a given initial state into a
given final state. The probability for the total process is then the square of the sum of
the transition amplitudes, which is not equal to the sum of the squares of the transition
amplitudes. Allowing for two alternatives, A, B, we have

|A+B|2 = |A|2 + |B|2 + 2ReAB∗ (1)

The difference, i.e. the interference term 2ReAB∗, often encodes valuable information.
Since this term depends on the relative phase between A and B, it will generally vanish
for alternatives subject to independent phase noise. Therefore, observation of interference
typically requires coherent sources.

A particularly interesting, novel kind of interferometry was invented by Hanbury Brown
and Twiss (HBT), which sidesteps that requirement [1]-[6]. In HBT “intensity interferom-
etry,” the transition between initial state and final state involves emission and absorption
of two indistinguishable photons at two locations (so the “detector” contains two distinct
modules). The overall result can occur through two distinct (crossed) channels, and by
measuring the total rate one can study interference between those two channels.

Hanbury Brown and Twiss, and many subsequent authors, emphasized the importance
of identical particles and quantum statistics in enabling their effect. Here we show that
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by allowing more complexity in the detectors, and in particular by exploiting projection
and entanglement, one can relax those requirements. The basic concept is that the same
final state will be accessed from different emission patterns by way of different parts of
the detector wave function. One can arrange for the two differences to cancel one another.
We call this entanglement enabled intensity interferometry (E2I2), in general, although in
some cases projection may substitute for entanglement.

Entanglement enabled intensity interferometry allows one, in principle, to interfere
sources that produce photons with orthogonal polarization, photons of different wave-
lengths, or photon and electron sources. Entanglement enabled intensity interferometry
demonstrates an important limitation on the concept of superselection, by exhibiting phe-
nomena whose occurrence violates a local version of that concept.

Here we will supply a very general mathematical formulation of these ideas, consider
several schematic designs for interferometers exploiting entanglement, discuss the insight
it affords into the issue of superselection, and briefly indicate some potential applications.
Detailed designs and specific applications will appear in future work.

1 Review of HBT

We consider two sources of photons 1, 2 and two detectors A,B. (See Figure 1.) We
denote the propagator from 1 to A by D1A, and similarly for the other source-detector
combinations. Neglecting also, for simplicity, the possible difference in arrival times, we
find that the probability for simultaneous firing of both detectors due to emissions from
the two sources involves

|D1AD2B + D2AD1B |2 = |D1A|2 |D2B|2 + |D2A|2 |D1B|2 + 2 ReD1AD2BD
∗
2AD

∗
1B (2)

The first two terms in this expression are the contributions from the red and blue processes
in Figure 1, while the third term represents interference between them. This interference
term has the remarkable property that random phases associated with the emitters 1
or 2 cancel, since each appears in both a propagator and a conjugate propagator. The
interference term therefore depends only on the relative phase factor introduced by the
geometry of the situation. As one varies the distance between the detectors, one gets
positive or negative interference. The distance between maxima reflects the separation of
the sources. For a single extended source, such as a star, the contrast will wash out at
large detector separations. The rate with which that happens reflects the angular size of
the source, and can be used to measure it. Hanbury Brown and Twiss exploited this effect
to measure the radius of Sirius and of several other stars. Subsequently, their basic idea
has been applied in many other applications, ranging from heavy ion collisions to the study
of condensed matter.
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Figure 1: Geometry of the Hanbury Brown - Twiss intensity interferometer. Two distinct
processes contribute to correlated firing of the detectors.

2 Polarization

It was implicit, in our preceding discussion, that the detector could not reveal where its
photon came from. If the photons have orthogonal polarizations, for example, they will
not interfere. For unpolarized sources, this effectively halves the HBT effect.

The question naturally arises: If the emitters do have non-trivial polarization properties,
can we access them? For example: If we have two very nearby sources, that emit in
orthogonal polarizations, can we resolve them? Unadorned HBT will not serve here, but
(as we shall see) a simple refinement accesses much more information, and does the job.

Let us first consider the simple case where emitter 1 produces photons with polarization

described, in a basis of orthogonal linear polarizations, by

(
α
β

)
, while emitter 2 produces

photons with polarization

(
γ
δ

)
. Furthermore, let us apply projections ΠA,ΠB at the two
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detectors. Then the rate for simultaneous firing becomes, as in our earlier discussion, a
sum of the separate process terms(

α∗ β∗
)

ΠA

(
α
β

) (
γ∗ δ∗

)
ΠB

(
γ
δ

)
|D1A|2|D2B|2 +

(
γ∗ δ∗

)
ΠA

(
γ
δ

) (
α∗ β∗

)
ΠB

(
α
β

)
|D2A|2|D1B|2 (3)

and the interference term(
γ∗ δ∗

)
ΠA

(
α
β

) (
α∗ β∗

)
ΠB

(
γ
δ

)
D1AD2BD

∗
2AD

∗
1B + c.c. (4)

We can generalize this by allowing the sources to emit in mixtures, described by polar-
ization (density) matrices π1, π2. Then we get for the uncrossed terms

Tr ΠAπ1 Tr ΠBπ2 |D1A|2|D2B|2 + Tr ΠAπ2 Tr ΠBπ1 |D2A|2|D1B|2 (5)

and for the crossed term

Tr ΠAπ1ΠBπ2 D1AD2BD
∗
2AD

∗
1B + c.c. (6)

= Tr ΠAπ1ΠBπ2 D1AD2BD
∗
2AD

∗
1B + Tr ΠAπ2ΠBπ1 D

∗
1AD

∗
2BD2AD1B

where in the second line we exploit the hermiticity of π,Π.
By letting the Πs interpolate between the two orthogonal polarizations of the sources in

our model problem, we obtain interference between them, which could allow us to resolve
them. More generally, use of the Πs can significantly enhance our perception of the sources.

With ΠA = ΠB = 1 intensity interferometry accesses the cross-polarization, an inter-
esting quantity that has been discussed previously [7]-[9]. We will call the more general
phenomenon linked polarization.

Note that in this procedure we have gained one form of information by erasing potential
information that would have enabled us, in principle, to say which source was responsible for
the emission (even when we can’t resolve it spatially). That erasure renders two otherwise
distinguishable processes to become indistinguishable, and enables their interference.

3 Introducing Entanglement

So far, we have used selective projection to get interference between non-identical emissions.
A more general and powerful technique also exploits entanglement of the detectors. As an
extreme example, let us consider that one of our emitters emits bosons b, while the other
emits fermions f . A detector that receives a boson goes into state B, while a detector that
receives a fermion goes into state F. (See Figure 2.)
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Figure 2: The same geometry as in Figure 1, but drawn to emphasize the possibility of
distinguishable emissions.

We would like to get interference between the terms in

S1AD2B|FB〉 + D2A S1B |BF〉

Following a similar philosophy to our polarization example, we change the state basis and
erase information to access interference.

We can do that directly, using entangled detector states (Procedure 1). Writing

S1AD2B|FB〉 + D2A S1B |BF〉

=
1

2
(S1AD2B + D2A S1B)(|FB〉 + |BF〉)

+
1

2
(S1AD2B − D2A S1B)(|FB〉 − |BF〉)

we see that by projecting on the entangled state

1√
2

(|FB〉 + |BF〉)
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we measure
|S1AD2B + D2AS1A|2

We might also follow the polarization strategy more literally, acting on the detectors
separately (Procedure 2). Here, with

|F〉A =
1√
2

(|C〉 + |D〉)

|B〉A =
1√
2

(|C〉 − |D〉)

|F〉B =
1√
2

(|E〉 + |F 〉)

|B〉B =
1√
2

(|E〉 − |F 〉) (7)

projection on
|C〉 〈C| ⊗ |E〉 〈E|

gives us what we want.

4 Superselection

Procedure 2 requires that we set up coherent superpositions of states that differ by one
in fermion number. That may be problematic, because it violates a superselection rule.
Procedure 1 is free of that issue, because the two parts of 1√

2
(|FB〉 + |BF〉), while they

differ in fermion number locally, agree in that respect globally. Below, we shall indicate a
geometrical method for realizing this entanglement. The possibility of measurable boson-
fermion interference sheds an interesting light on superselection, emphasizing its global
nature.

5 General Entanglement

We can capture both our procedures, and reach a proper generalization, in the following
way. The projectors ΠA,ΠB encode density matrices for the final states of the detectors
A,B. When their states are entangled, however, the density matrix of the entire system
will not factorize, and we will need to employ a system density matrix, in the form

(ΠA)α1
α2

(ΠB)β1β2 → Πα1β1
α2β2

We should also allow for the interesting possibility of entanglement in the emitters.
That is accommodated according to

(π1)
α1
α2

(π2)
β1
β2
→ πα1β1

α2β2
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With these notations, we can generalize our formula Eqn. (5) in the form

Πα1β1
α2β2

πα2β2
α1β1
|D1A|2|D2B|2 + Πα1β1

α2β2
πβ2α2

β1α1
|D2A|2|D1B|2 (8)

and our formula Eqn. (6) in the form

Πα1β1
α2β2

πβ2α2

α1β1
D1AD2BD

∗
2AD

∗
1B + Πα1β1

α2β2
πα2β2
β1α1

D∗1AD
∗
2BD2AD1B (9)

By comparing experimental data with Eqns. (8, 9), and determining whether it is con-
sistent with factorization of π, we become sensitive to entanglement between the emitters.
This effect could be used as a probe for proposed exotic states of matter that feature long-
range entanglement. It would also be interesting to investigate the possible existence of
entanglement and linked polarization in the microwave background radiation.

6 Variations

6.1 Entanglement by Spatial Superposition

Previously, in order to measure interference between the states of a boson and fermion,
we needed to project detector states onto 1√

2
(|FB〉 + |BF〉). Here we describe a more

geometric way to obtain the desired interference.
Say that we have two detectors located at A and B respectively. The detector located at

A begins in a fermion accepting state |F〉 which transitions to |F〉 if and only if it absorbs a
fermion. Similarly, the detector at B begins in a boson accepting state |B〉 which transitions
to |B〉 if and only if it absorbs a boson. The initial state of the detectors is |F〉|A〉⊗ |B〉|B〉
where we have included states that keep track of the positions of the detectors.

Now we put the detectors in an equal superposition of being at their original positions
and being in swapped positions as

1√
2

(|F〉|A〉 ⊗ |B〉|B〉+ |F〉|B〉 ⊗ |B〉|A〉) (10)

This superposition of swapped and unswapped detectors can be obtained by application of
the unitary operator

Ŝ =
1√
2

(|A〉 ⊗ |B〉+ |B〉 ⊗ |A〉) (〈A| ⊗ 〈B|) +
1√
2

(|A〉 ⊗ |B〉 − |B〉 ⊗ |A〉) (〈B| ⊗ 〈A|)

+ |A〉〈A| ⊗ |A〉〈A|+ |B〉〈B| ⊗ |B〉〈B|

to the spatial states. Note that Ŝ has the property Ŝ2 = 1.
If we have a fermion emitter and a boson emitter as before, we will be interested in the

terms
S1AD2B|F〉|A〉 ⊗ |B〉|B〉+D2AS1B|F〉|B〉 ⊗ |B〉|A〉 (11)
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Applying Ŝ to the terms in Eqn. (11) we obtain

1√
2

(S1AD2B +D2AS1B)|F〉|A〉 ⊗ |B〉|B〉+
1√
2

(S1AD2B −D2AS1B)|F〉|B〉 ⊗ |B〉|A〉

Projecting on the separable state |F〉|A〉 ⊗ |B〉|B〉, we measure |S1AD2B + D2AS1B|2 as
desired.

In practice, of course, maintaining quantum coherence through a spatial swap operation
presents a demanding challenge, but at least it is a clearly defined one.

6.2 Different Wavelengths

The preceding strategy, which enables our Procedure 1, might also be applied to the in-
terference of photons with different wavelengths. It is also not difficult to devise, for this
application, a quasi-realistic version of Procedure 2, with projection at the separate de-
tectors. (See Figure 3.) We imagine producing a definite superposition of atomic states
α|0〉+ β|1〉, both of which can transition, upon reception of different-wavelength photons,
to a common level |2〉. Then the rate for populating |2〉 will depend on the relative phase
between those photons, and exhibits their interference.

Figure 3: States of an atom, showing two levels that may both feed into a third.

6.3 Single Source of Decaying Particles

A central theme of E2I2 is measuring detector states in mixed bases. We can leverage
this technique in situations when there is only a single source. Here we will discuss the
interesting case of a single source that is a collection of identical decaying particles.

Consider a particle C which either decays into two particles of type D or two parti-
cles of type E. Thus, the two decay channels are C → DD and C → EE which occur
with probability amplitudesMC→DD andMC→EE respectively. Typically, when we com-
pute information about a decay process we are interested in the absolute squares of the
probability amplitudes |MC→DD|2, |MC→EE |2 which are measured in standard particle
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experiments. By considering mixed bases of detector states, we gain access to the relative
phases between the probability amplitudes.

Let “1” denote a source of decaying C particles. Additionally, we have two detectors
at A and B which are in DD and EE accepting states respectively. We want interference
between the terms

MC→DDD1A|DD〉|EE〉+MC→EES1B|DD〉|EE〉

Projecting onto 1√
2
(|DD〉|EE〉+ |DD〉|EE〉) we obtain

|MC→DDD1A +MC→EES1B|2

which gives interference between the probability amplitudes for decay. A similar procedure
can be used to measure relative phases between the probability amplitudes of scattering
processes.

6.4 Mach-Zehnder Interferometry without Recombining Paths

The basic concept of E2I2 is very flexible. As an example of the possibilities, we outline an
alternative realization of the classic Mach-Zehnder interferometer, wherein entanglement
allows us to simplify the geometry.

In Mach-Zehnder interferometry, two alternative paths for a single photon are produced
by interposing a beamsplitter and recombining at a detector. One can complicate prop-
agation in one of the paths by inserting a translucent material and thereby, through the
modified interference, obtain information about the material. Using the techniques of E2I2,
we can measure Mach-Zehnder interference without recombination of paths. Consider the
setup in Figure 4.
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Figure 4: Geometry of setup to perform Mach-Zehnder interferometry without
recombining paths.

We have a source (labeled “1”) of photons of energy hν, two boxes which each contains
atoms of type A and B respectively, each in the state 1√

2
(|0〉+ |1〉) (see Figure 5), and two

detectors A′ and B′.

Figure 5: States of the atoms A and B.
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If a photon from the source interacts with an atom in the ground state |0〉, the atom
will be excited to |1〉 and the detector behind the atom will not fire. On the other hand,
if a photon from the source interacts with an atom in the excited state |1〉, then the atom
will not absorb the photon and instead the photon will be absorbed by the nearby detector.
We want to consider the terms

D1A|1〉A ⊗
1√
2

(|0〉B + |1〉B)⊗ |not fired〉A′ ⊗ |not fired〉B′

+ D1B
1√
2

(|0〉A + |1〉A)⊗ |1〉B ⊗ |not fired〉A′ ⊗ |not fired〉B′

Projecting onto |1〉A⊗|not fired〉A′ and |1〉B⊗|not fired〉B′ , each which can be done locally,
we get (up to a constant factor)

|D1A +D1B|2

which contains the Mach-Zehnder interference term. Note that the A, A′ and B, B′

arrangements can be far apart, but Mach-Zehnder type interference will occur nevertheless.

Acknowledgements

Jordan Cotler was funded by the Undergraduate Research Opportunities Program at the
Massachusetts Institute of Technology. Frank Wilczek’s work is supported by the U.S.
Department of Energy under grant Contract Number DE-SC00012567.

11



References

[1] Brown, R. Hanbury, and Richard Q. Twiss. “A Test of a New Type of Stellar Inter-
ferometer on Sirius.” Nature 178.4541 (1956): 1046-48.

[2] Brown, R. Hanbury, and Richard Q. Twiss. “Correlation between Photons in Two
Coherent Beams of Light.” Nature 177.4497 (1956): 27-29.

[3] Brown, R. Hanbury, and Richard Q. Twiss. “Interferometry of the Intensity Fluc-
tuations in Light. I. Basic Theory: The Correlation between Photons in Coherent
Beams of Radiation.” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 242.1230 (1957): 300-24.

[4] Brown, R. Hanbury. The Intensity Interferometer; Its Application to Astronomy.
London: Taylor & Francis, 1974. Print.

[5] Fano, Ugo. “Quantum Theory of Interference Effects in the Mixing of Light from
Phase-Independent Sources.” American Journal of Physics 29.8 (1961): 539-45.

[6] Baym, Gordon. “The Physics of Hanbury Brown–Twiss Intensity Interferometry:
From Stars to Nuclear Collisions.” arXiv:nucl-th/9804026 (1998).

[7] Shirai, Tomohiro, and Emil Wolf. “Correlations between Intensity Fluctuations in
Stochastic Electromagnetic Beams of Any State of Coherence and Polarization.”
Optics Communications 272.2 (2007): 289-92.

[8] Volkov, S. N., Daniel F. V. James, Tomohiro Shirai, and Emil Wolf. “Intensity Fluc-
tuations and the Degree of Cross-polarization in Stochastic Electromagnetic Beams.”
Journal of Optics A: Pure and Applied Optics 10.5 (2008): 055001.

[9] Al-Qasimi, Asma, Mayukh Lahiri, David Kuebel, Daniel F. V. James, and Emil
Wolf. “The Influence of the Degree of Cross-polarization on the Hanbury Brown-
Twiss Effect.” Optics Express 18.16 (2010): 17124-29.

12


