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Abstract

This is a brief introduction to the consistent histories approach to
quantum mechanics. Aside from some orienting commentary, it is a
proper — but also dense — subset of the first 11 chapters of Griffiths
“Consistent Quantum Theory”.

. Physical Properties and Logical Operations

In classical mechanics, the state of a system is specified by a point in
phase space. In quantum mechanics, it is specified by a ray in Hilbert
space, or equivalently by the one-dimensional projection operator

Py = |¥) @l = W] (1)

Note that P is an Hermitean operator with P? = P

In classical mechanics, a (binary, yes-or-no) property P of states is
specified by an indicator or characteristic function xyp on phase space,
which takes the value 1 on the set of states for which the property is
true, and 0 where it is false.

In quantum mechanics, a property of states is a linear subspace of
Hilbert space, or equivalently the associated projection operator @)
(not necessarily one-dimensional, of course). So @ is Hermitean and
Q% = Q. We say the state 1) has the property P associated with Q
if Qv) = |¢), and that it does not have the property @ if Q) = 0.
If neither of these conditions holds, then the property Pg is undefined
on [¢). This possibility has no classical analogue.



Note that the states which either do or do not have the property Pg
are precisely the eigenstates of ). An equivalent condition is

QY] = @ (2)

i.e. that the property Pq is defined on |¢) if and only if () commutes
with [¢].

For any quantum property @', we can implement NOT-Q by 1 — Q.
With this definition, NOT-Q) has the properties that we expect in logic,
with the added feature that it is undefined precisely when @ is.

If @, R are two commuting properties, QR = RQ, then it makes sense
to define
QANDR = QAR = QR (3)

Indeed, QR is a projection operator, and it projects on states that are
in both of the “true” subspaces for @ and R.

On the other hand if ) does not commute with R then QR is neither
Hermitean, nor equal to its square. There is no obvious way to make
sense of the notion that Q and R are both true. An example of this
situation, which shows its hopelessness, is @ = o3, R = o1 acting
on the 2-dimensional Hilbert space of a spin—% system. If we want to
maintain as much of classical logic as we can in the quantum domain,
it seems most fruitful to declare that when QR # R(Q) those properties
are incompatible. They cannot both be ascribed to the same system
at the same time.

For compatible properties we can define logical OR according to
QOR R = NOT ((NOTQ) AND (NOT R))
= 1-(1-QU-R) = Q+R-QR (4

and so forth. All the definitions and results of propositional calcu-
lus carry over, as long as we consider algebras containing commuting
properties only.

Note that meaningless is quite different from false. Indeed, “false” is
quite meaningful.

'Henceforward I'll identify quantum properties with the operators that implement
them, when no confusion can arise.



Similarly, incompatible is quite different from contradictory. P and Q)
are contradictory properties if P() = 0, and in that case they certainly
commute, so they are compatible!

[discussion points: partial compatibility, quantum logic (Birkhoff-von
Neumann)]

One can have two rich and internally compatible sets of properties
{P;}, {Qk} that are mutually incompatible. Then each is a valid way
to describe our system, but they cannot be applied simultaneously.
The classic example in quantum mechanics is position and momen-
tum. We can construct appropriate “properties”, in the present sense,
by projection on intervals (or more general subsets of the line). For
example, the operator that takes a position-space wave function i (z)
for —oo < x < oo and projects it onto the function

w[a,b] (Z’) = 0, z<a
Yap)(z) = Y(x)a<z<Dd
¢[a,b] () = 0,b<x (5)

is a projection operator. The projection operators in position space all
commute, and so are compatible. Similarly, we can form an algebra of
compatible projections in momentum space. But these two algebras
are mutually incompatible.

The possibility of rich and individually valid, but mutually incompati-
ble, descriptions is the essence of Bohr’s beloved complementarity. Its
mind-expanding significance ramifies far beyond quantum mechanics.
Kant’s interpretation of the physical versus moral description of human
beings and (transcendence of) the mind-body “problem” — psychologi-
cal versus physical descriptions of mental /brain states — are, I believe,
profound examples. They might seem more ad hoc and far-fetched,
had we not the very concrete, quantitative, and successful model of
quantum complementarity before us.

. Physical Variables and Probabilities

In classical physics one can define a sample space of mutually exclusive
properties by decomposing the identity function in phase space into a
sum of characteristic functions. Alternatively, one carves phase space
into disjoint sets whose union is the whole space. A random variable on
this sample space is an assignment of probabilities p,, with 0 < p, < 1,
> pa =1, to the sets ... with probability 0 for the null set.

«
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In quantum physics the appropriate concept is a decomposition of the
identity function in Hilbert space into a sum of mutually commuting
projection operators:

1 = Y P,

Pl = P,
P,Ps = 6u3P, (6)

Alternatively, we can view this as a decomposition of Hilbert space
into mutually orthogonal linear subspaces.

Each P, can defines a property of our system, as discussed above. The
properties are compatible. We can assign probabilities p, to the dif-
ferent properties, and the usual rules of probability calculus will apply.
One can, of course, consider different decompositions of the identity.
These correspond to asking different questions about the system. If all
the projection operators in two decompositions {P,}, {Qg} commute
then we can define a common refinement through the decomposition
using all the products P,Q3. In this refinement, we can recover the
P, by summing P,(g over o, and so forth, so nothing has been lost.
In the refinement, we can ask both the old questions and more refined
“AND” questions.

On the other hand one can also have incompatible decompositions.
They correspond to complementary questions, and cannot be com-
bined.

For any Hermitean operator A, one can introduce the a sample space
based on its eigenspaces. The set of properties “A has the value
vo(A)”, where v,(A) runs over the eigenvalues of A, is represented
(minimally) in that sample space. Commuting Hermitean operators
define compatible sample spaces; non-commuting operators define in-
compatible sample spaces.

. Histories and Their Logic

So far we have discussed properties of a system at one time. To discuss
dynamics, we need to bring in the concept of histories.

We consider several times ¢; < t;... < ty. For each time we have
a Hilbert space of states Hy;, and histories are defined in the tensor
product H of those Hilbert spaces

H = Htf ®...Q0 Hy @ Hy, (7)
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with the earlier times occurring to the right. A history is the choice,
for each time ¢;, of a property Fy; in Htj2. (Fi; can be the identity, if
we allow anything to happen at ¢;; if F;; = 0, we have the null history.)
A history defines a property in the history Hilbert space, according to
the projector

Y = I, 2.8 08, (8)

It can be interpreted to mean that the system has property F;; at each
time tj.

We can take over most of our previous discussion of properties to this
new context. Thus one has compatible and incompatible histories,
logical operations on compatible histories, sample spaces of histories,
refinements of compatible sample spaces of histories ...

4. Born Rule: Special

Now we bring in dynamics — to be sure, very abstractly — by assum-
ing we are given unitary evolution operators T'(p,t,) connecting the
Hilbert spaces for any two times t;,t,. We assume the conditions

Tty ta)™t = Tty ta) = T(ta,ty)
T(te, ty)T(tp, ta) = T(te,ta)
T(ta,ta) = 1 (9)

In many applications of quantum mechanics, we would have T'(t,t,) =
e~ (l—ta) \where H is the appropriate Hamiltonian.

It is instructive to formulate the Born rule for assigning probabilities
of “observables” to states in our present language. Let us suppose that
we know our system is in the state |[¢)) at ¢y, and we want to know
whether it has property P at a later time ¢;. The Born rule tells us
that this occurs with probability

Pr = | PT(t:,to)¥) || (10)

involving the square of the projected evolved wave function. We can
re-write this is a suggestive way as

Pr = (|T(t1,t0) PT(t1,t0)ep)) = Tr (T(tlato)TPT(tl,to)W]) (11)

2This is slightly different from, and more restrictive than, defining a history simply as
a property in the history Hilbert space. Whether the more general notion, which seems
natural, is interesting or useful, I don’t know



We can interpret this as connecting the unitarily evolved property [¢],
ie. T(ty,to)[W]T(t1,t0)T, to the property P, with the inner product of
operators defined by the trace. This is the interpretation we will run
with, and generalize.

Note that if we take t; = ty, we encounter a subtlety: the property
[t)] may be, and in interesting cases usually will be, incompatible with
P. In that case (and, really, in general) we should not regard [¢] as
introducing a new property, but rather as a mathematical summary
of our knowledge of the system. Griffiths calls it a pre-probability.

5. Born Rule: General

Now let us generalize Eqn. (11), so that we can discuss probabilities
of histories. Suppose that we have a sample space of histories, with
typical representative

Y = FS®..@FY@F. (12)
We define the chain operator K(Y®) through?
K(Y*®) = FIT(ty,tp)F Tt )BT (0, 6)FS (13)
And now we define the weight of history Y¢ as
W({Y?) = Tt K(Y*) K (V%) (14)

The generalized Born rule postulates that the weights generate relative
probabilities.

Important: The generalized Born rule depends on the dynamics, through
the T's. Unlike most of what we’ve discussed heretofore, the Born rule
is not simply a “kinematic” property of Hilbert space operators alone.

The use of the generalized Born rule will become clearer through ex-
amples. For now let’s just consider a couple of very simple ones. For
two times, we can define a sample space of histories

Y* = Pa@W]
YO = 1e(1-[) (15)

If we know that our system has property [¢] at time ¢;, and are in-
terested in the probability that it has property P, at ty, then we our

3You may notice a family resemblance between this concept and the “Wilson lines” of
gauge theory. That might be an interesting thought to carry further.



recipe for the relative probability of histories takes us back to the spe-
cial Born rule. On the other hand, we may only know that our system
has the broader property @ at time ¢;. Then it is appropriate to use
the sample space

Y = P,®Q

YO = 19(1-Q) (16)

and our recipe gives us the probabilities

TreT(ty, t;) PT(ts,t:)Q
Tr@Q

Pr(a) = (17)

. Consistent Histories

In order that the weight generated by the generalized Born behaves
as a weight should, a non-trivial consistency condition must be sat-
isfied. It is a gratifying and important meta-result, which in some
sense justifies the consistent histories approach, that this consistency
condition has a simple heuristic content, and that with its use one can
defuse several quantum “paradoxes”. (For examples of the latter, see
the later chapters of Griffiths.)

The condition is this: We want that the weight of a union of histories
should be the sum of the weights of the histories. We can incorporate
unions by considering sums of the form

Ve = ) mY® (18)
where the 7, are 0 or 1. We would like for the weight of Y, to be
W(Ye) = Y maW(Y?) (19)
On the other hand, a very simple calculation gives us
W) = Z Z TR TrK(Yﬁ)TK(Ya) (20)
ﬁ (%

We can insure that Eqn. (20) does give us Eqn. (19) if we have the
consistent histories condition

TrK(Y3)K(Y,) = 0 fora#p (21)

(In fact the weaker condition, that the left-hand side be antisymmetric
in «, 3, or equivalently that it is pure imaginary, is sufficient. The
significance of this option, if any, is unclear.)



7. Inconsistent History Example

Sample spaces of histories based on two times always obey the consis-
tent histories condition. (Checking this is a good exercise. Hint: It’s
trivial.)

For three times it is not so. We encounter an inconsistent set of his-
tories already for a free spin—% — i.e., a two-dimensional Hilbert space,
and all the T"= 1. Consider the sample space

YO = [elel
Y = [Nelzt e
Y2 = [Neltez]
V3 = Moo
Y4 = [Nek7]ez] (22)
where
o] = 12 (23)

projects on spin up in the Z direction, and so forth. One finds

1—|-0'31+0'11+0'31—0'11+0'3
2 2 2 2 2

1 . .
= 1—6Tr(1 + o3+ 01 +i02)(1 4 03 — 01 — i09)

1
= 1 #0 (24)

TKYY)YK(Y? = Tr

So this sample space fails the consistent histories condition. As it
should! — for it corresponds to our spin, initially with spin up in
the Z direction, has both the property of having a definite value &
direction, and then of having a definite value in the Z direction. But
— in the language of Copenhagen, translated from the Danish — the
measurement of spin in the & direction destroys the possible property
of having a definite spin in the 2 direction later, which we could have
had, without the measurement.



