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1. Classical mechanics, as usually formulated, seems to inhabit a dif-
ferent conceptual universe from quantum mechanics. Koopman and von
Neumann developed a mathematical formulation of classical mechanics us-
ing concepts usually associated with quantum theory. In this formulation
we have wave functions, Hilbert spaces, operators, ... . The Koopman-von
Neumann (KvN) formulation has proved useful as a technical device in sev-
eral applications, notably in ergodic theory. It deserves to be better known
among physicists, because it gives a new perspective on the conceptual foun-
dations of quantum theory, and it may suggest new kinds of approximations
and even new kinds of theories (which is what we’ll be heading toward).

2. Let us recall the phase space formulation of distributions in classical
mechanics, as is often used in statistical mechanics and kinetic theory. For
simplicity in notation I’ll write equations for a system with one degree of
freedom, but their generalization is straightforward, and when it becomes
necessary we’ll add in complications without much ado.

The quantity of interest is the density ρ(x, p, t). It is a non-negative real
quantity, to be interpreted as the probability that we’ll find a particle with
momentum p at point x at time t, using the measure

∫
dx dp. Liouville’s

theorem in mechanics tells us that the flow of this fluid is incompressible.
So we have

0 =
dρ

dt
=

∂ρ

∂t
+ ẋ

∂ρ

∂x
+ ṗ

∂ρ

∂p
(1)

or

∂ρ

∂t
= − ẋ ∂ρ

∂x
− ṗ

∂ρ

∂p

= − ∂H

∂p

∂ρ

∂x
+
∂H

∂p

∂ρ

∂p
(2)
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which serves as a dynamical equation for ρ. If we multiply both sides by i,
we get an equation having a family resemblance to the Schrödinger equation.

3. With that motivation, we introduce a complex wave function ψ(x, p)
which obeys that equation:

i
∂ψ

∂t
= i(−∂H

∂p

∂ψ

∂x
+
∂H

∂p

∂ψ

∂p
)

≡ L̂ψ (3)

where the last line defines the Liouville operator L̂.
A first simple but profound point is that ρψ ≡ |ψ(x, p)|2 then satisfies

Eqn. (1). Thus, when interpreted as a probability density, it satisfies the
appropriate dynamical equation. This result follows immediately by appli-
cation of the Leibniz rule for derivatives of products.

A second is that L̂ is an Hermitian operator with respect to the inner
product

〈ψ|ψ〉 =

∫
dx dpψ∗(x, p)ψ(x, p) (4)

One proves this through an integration by parts. Note that the i is im-
portant here, which is the reason it was introduced. The equality of mixed
derivatives, ∂2H

∂p∂x = ∂2H
∂x∂p also comes in, canceling the terms that arise from

the functional factors in L̂.

4. Now we want to build up the formalism along lines parallel to the
conventional treatment of quantum theory, introducing operators and ob-
servables. In fact we will use the same axioms for both classical and quan-
tum theory, except that in the classical theory the operators for position
and momentum commute, while in the quantum theory they do not

[x̂, p̂] = 0 (classical) (5)

[x̂, p̂] = ih̄ (quantum) (6)

We will not assume the functional form of the wave function, but derive it
– with different results, in the two cases – as a possible realization of the
fundamental Hilbert space structure, starting from more abstract principles.

An appropriate set of axioms includes the following

1. Normalization: The wave function for an individual system satisfies

〈Ψ(t)|Ψ(t)〉 = 1 (7)

2



2. Observables: Observables are defined by Hermitian operators. The
expectation value of an observable Â at time t is given by

A(t) = 〈Ψ(t)|Â|Ψ(t)〉 (8)

3. Born rule: The probability of measuring the value a of an observable
Â at time t is given by

Pr(a) = |Πa|Ψ(t)〉 |2 (9)

where Πa is the projection operator onto the eigenspace of Â with
eigenvalue a.

4. Composite Systems: Composite systems are described by tensor prod-
uct Hilbert spaces.

We will not be developing a rigorous axiomatic approach here; I’m recalling
this material just to set the context. (Dirac’s book is a great and inspiring
development of quantum mechanics along these lines.)

Those are general “kinematic” axioms. To implement a particular dy-
namics, we must specify further structure.

The operators U(t) that connect wave functions at time 0 to wave func-
tions at time t,

|Ψ(t)〉 = U(t)|Ψ(0)〉 (10)

give us a unitary representation of the group of time translations. According
to Stone’s theorem, there must be a generating Hermitean operator, with

i
d|Ψ〉
dt

= L̂|Ψ〉 (11)

In conventional quantum theory L̂ is the operator Hamiltonian, but in the
classical theory it will be a related yet different operator, as we shall see.

5. Here we will consider Newtonian mechanics, and implement the cor-
respondence principle by demanding Newton’s equations for the expectation
values of observables for position and momentum, in the form

d

dt
〈x̂〉 = 〈p̂/m〉

d

dt
〈p̂〉 = 〈−Û ′(x)〉 (12)
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Using Eqn. (11) and the axioms, we can spell out the first of these equa-
tions as

d

dt
〈Ψ(t)|x̂|Ψ(t)〉 = (

d

dt
〈Ψ(t)|)x̂|Ψ(t)〉 + 〈Ψ(t)|x̂ d

dt
|Ψ(t)〉

= i〈Ψ(t)|[L̂, x̂]|Ψ(t)〉

= 〈Ψ(t)| p̂
m
|Ψ(t)〉 (13)

Since this is to hold for any wave function, we have the operator equation

i[L̂, x̂] =
p̂

m
(14)

Similarly, we have
i[L̂, p̂] = − Û ′(x) (15)

Here the hat (̂) notation which indicates operators is used to indicate that
we take the derivative of the potential with x treated as a number, and then
convert to operators at the end. This notation will be very useful to us.

6. Now if we have the classical (trivial) commutation relation [x̂, p̂] = 0,
then we cannot construct an L̂ that implements Eqns. (14, 15) out of the
dynamical variables x̂, p̂ alone. Stone’s theorem tells us there is such an
operator, but it does not guarantee that it can be expressed in terms of
some given set of operators.

To remedy the situation, we introduce two additional Hermitian opera-
tors λ̂x, λ̂p which satisfy

[x̂, λ̂x] = i (16)

[p̂, λ̂p] = i (17)

with all other commutators involving these variables vanishing. (Soon we
shall construct these operators explicitly.) With the help of these additional
operators, we can construct a satisfactory L̂, which implements the corre-
spondence principle dynamics, as

L̂ =
p̂

m
λ̂x − Û ′(x)λ̂p (18)

7. Now we use a particular choice of basis to bring the results into a
more familiar, intuitively accessible form. Since x̂, p̂ are commute, and (we
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can assume) form a complete set of commuting observables, we form a basis
of simultaneous eigenstates, according to

x̂|x, p〉 = x|x, p〉
p̂|x, p〉 = p|x, p〉 (19)

with the normalization condition

〈x′′, p′′|x′, p′〉 = δ(x′′ − x′)δ(p′′ − p′) (20)

From
[x̂, λ̂x] = i (21)

we easily derive
[x̂n, λ̂x] = inx̂n−1 (22)

and using Taylor’s series

[f̂(x), λ̂x] = i ̂f ′(x) (23)

We can represent wave functions in the form

〈x, p|Ψ(t)〉 = ψ(x, p, t) (24)

and then we have

λ̂x ∼ − i ∂
∂x̂
→ − i ∂

∂x
(25)

in this representation. Similarly,

λ̂p → − i ∂
∂p

(26)

The Schrödinger equation, in this representation, becomes the wave equation

i
∂ψ

∂t
=
( p
m

(−i ∂
∂x

)− U ′(x)(−i ∂
∂p

)
)
ψ (27)

– which brings us, of course, back to our motivational starting point.

8. For an observable ̂A(x, p) constructed from x̂, p̂, we have for the
expected value at time t

〈Ψ(t)| ̂A(x, p)|Ψ(t)〉 =

∫
dx dpψ∗(x, p, t)A(x, p)ψ(x, p, t)

=

∫
dx dpA(x, p)ρ(x, p, t) (28)
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as it should be, realizing the interpretation of ψ∗ψ as a probability distri-
bution in phase space.

We can, however, also consider other sorts of observables – that is, Her-
mitian operators – involving λ̂x, λ̂p as well as x̂, p̂. These do not have a direct
classical meaning. Indeed, in going from the classically meaningful ρ(x, p)
to the “square root” ψ(x, p) there is an arbitrary, position (in phase space)
dependent phase choice – a sort of gauge transformation. Only observables
which do not depend on that phase choice will be meaningful, classically.
In other words, the classical content of the theory is restricted to gauge
invariant observables.

Nevertheless the non-classical observables are perfectly well defined oper-
ators in Hilbert space. They are realized as differential operators, as we’ve
seen. They will play an important role in the generalized, mixed quan-
tum/classical theories we introduce below.

We should also note that as it stands the new gauge symmetry is not
dynamical, nor does it allow time-dependent gauge transformations. It may
be interesting to lift those restrictions, but I will not discuss that possibility
further here.

9. It is worth a short digression to make contact with traditional New-
tonian point particle mechanics. This is most naturally done through the
method of characteristics, as follows. A first-order partial differential equa-
tion

f j(yk)∂jG(yk) = 0 (29)

we note that G will be constant along the solution curves of the system of
ordinary differential equations

dyk

dλ
= fk (30)

Thus we can solve the partial differential equation, given the initial data on
a codimension one hypersurface, by drawing the characteristics through it,
and transporting the data.

In our context, the characteristics of

∂ψ

∂t
+

p

m

∂ψ

∂x
− U ′(x)

∂ψ

∂p
= 0 (31)

are the solutions of

dt

dλ
= 1
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dx

dλ
=

p

m
dp

dλ
= − U ′(x) (32)

– in other words, the Newtonian trajectories. Thus delta-function solutions,
with definite initial values of x, p, will follow the Newtonian equations for a
point particle.

10. It is pleasant that the basic object in the Koopman-von Neumann
framework, that is the wave function, lives in a complex vector space. Thus
we have the usual notion of linear superposition. That superposition princi-
ple is not available for ρ, which is constrained to be real and non-negative.

11. Conventional quantum mechanics can be developed axiomatically
along similar lines, but the nontrivial commutator [x̂, p̂] = i leads to two
major qualitative differences.

1. Now we can implement Eqns. (14, 15) using only the dynamical vari-
ables x̂, p̂. Indeed, we find

L̂ =
p̂2

2m
+ Û(x) = Ĥ (33)

– the familiar result that the Hamiltonian operator generates temporal
evolution.

2. Now x̂ (or p̂) by itself forms a complete set of commuting observables.
Accordingly, we can use a basis of eigenstates |x〉 with

x̂|x〉 = x|x〉
〈x′′|x′〉 = δ(x′′ − x′) (34)

and represent wave functions using

〈x|Ψ(t)〉 = ψ(x, t) (35)

12. In the classical theory, as in the quantum theory, a measurement
gives us information on the wave function, that amounts to a projection
in Hilbert space. In the classical theory, it “collapses the wave function”
in the sense that in calculating the subsequent evolution of the classical
system, we should take into account the information we’ve acquired, and

7



calculate relative probabilities that incorporate that knowledge, using an
appropriate (collapsed) wave function. In the classical theory, at least, it
seems hard to avoid the implication that the wave function reflects our
knowledge of the system. More generally, it seems that controversies over
the interpretation of quantum theory can be illuminated by comparing with
this parallel formulation of classical physics.

13. We obtain an interesting perspective on the classical theory by re-
naming the variables, as follows:

x̂ → x̂1

p̂ → p̂2

λ̂x → p̂1

λ̂p → − x̂2 (36)

After this renaming, we find that our dynamical variables obey the conven-
tional (Heisenberg) quantum commutation relations for two particle degrees
of freedom.

x̂1, p̂2 form a complete set of commuting observables, so we can form
wave functions ψ(x1, p2, t) which, according to our preceding work, obey the
Schrödinger equation

i
∂ψ

∂t
= (

p2
m

(−i∂x1)− U ′(x1)(i∂p2))ψ (37)

This looks like a more-or-less normal quantum system, but we know, by
construction, that it has a “secret” classical core.

Observables of the form G(x̂1, p̂2) correspond to the observables of the
original classical theory. More general observables, involving x̂2, p̂1, are not
observables of the original classical theory. Nevertheless, they can be calcu-
lated unambiguously from the wave function, by using Fourier transforms.

The generator of temporal evolution, according to Eqn. (37), is the op-
erator ̂Htemporal =

p̂2
m
p̂1 + ̂U ′(x1)x̂2 (38)

This is quite different from the operator form of the classical Hamiltonian,
i.e.

ĤC =
p̂2

2

2m
+ U(x̂1) (39)
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One might therefore worry about conservation laws, boundedness of energy,
and so forth. It is therefore important to observe that for x̂1, p̂2, and there-
fore for all classical observables ̂A(x1, p2), one has the relation

[ ̂Htemporal, Â] = i
̂

(−∂HC

∂p2

∂A

∂x1
+
∂HC

∂x1

∂A

∂p2
) (40)

which – for classical observables – links commutators of the temporal evo-
lution operator of the quantum system with the Poisson bracket of the clas-
sical system. Thus the classical conservation laws remain valid, with the
conserved quantities taking their usual form. ̂Htemporal is of course also a
conserved quantity, though it is not a classical observable.

To round out this discussion, let us note that the classical Lagrangian
corresponding to the temporal Hamiltonian is

Ltemporal = mẋ1ẋ2 − U ′(x1)x2 (41)

14. Alternatively, we can do a further renaming

x̂2 → −̂p2
p̂2 → x̂2 (42)

This is a canonical transformation, which leaves the commutation relations
unchanged.

Now we have x̂1, x̂2 as the complete set of commuting observables, and
the basic classical dynamical variables. The temporal Hamiltonian is

̂Htemporal =
x̂2
m
p̂1 − ̂U ′(x1)p2 (43)

and the corresponding Lagrangian vanishes.

15. How is the “determinism” of classical mechanics, as contrasted with
quantum mechanics, reflected here? Both theories have a Born rule, which
appears probabilistic . Both implement unambiguous time evolution, given
an initial value for the wave function, which appears deterministic. The
difference is that in the classical theory one can have states – the |x, p〉 –
wherein all the interesting observables variables have definite values. That
is not possible in the quantum theory. No matter what state we are in there
will always be questions for which the answer is probabilistic, even though
the dynamical equations are completely definite.
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16. Now let us consider the possibility of constructing new kinds of
theories, involving both quantum and classical dynamical variables. We
have

[x̂Q, p̂Q] = i

[x̂C, p̂C] = 0 (44)

We can follow the preceding constructions of the separate theories in a
straightforward way, until we reach the following point, when we try to
couple them. The correspondence principle suggest both

i[L̂, p̂Q] = − ̂∂xQU(xQ, xC) (45)

and
i[L̂, p̂C] = − ̂∂xCU(xQ, xC) (46)

The second of these requires, as we’ve seen, that we bring in the operator
λ̂pC . But that operator will then carry infest the left-hand side of Eqn. (45),
where it is not wanted.

There are two simple options for dealing with this difficulty.

1. Option 1: We can add ̂U(xC, xQ) to L̂. Then we satisfy Eqn. (45),
but find zero in place of the right-hand side of Eqn. (46). The classi-
cal system therefore evolves on its own, independent of the quantum
system, which however it does affect. (We can include of course allow
non-trivial self-dynamics for the classical theory, as before.) In effect,
the classical system acts as an external field imposed on the quantum
system.

2. Option 2: We can add − ̂∂xCU(xC, xQ)λ̂pC to L̂. This implements
Eqn. (46) as it stands, but gives us

i[L̂, p̂Q] = − ̂∂xQ∂xCU(xQ, xC)λ̂pC (47)

in place of Eqn. (45). The evolution of the quantum system now de-
pends on the classical system through its non-classical observable λ̂pC .
That very interaction gives us access to the non-classical observable,
and lifts it from being a purely formal construct, which it was within
the classical theory, into becoming a physically meaningful quantity.
This is a much less familiar, but apparently consistent, way to con-
struct mixed theories.
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We can also add both terms. In this way we get both the expected inter-
actions, plus an additional term whereby the classical theory perturbs the
quantum theory, through a classically determined but non-classical interac-
tion.

Of course, if we do not insist on deriving our coupling from a classical
correspondence principle, we have the option of coupling the classical to the
quantum theory in much more general ways.

17. It is natural to consider commutation relations in the form

[x̂j , p̂k] = iAjk (48)

with a c-number antisymmetric expression A. By linear transformations of
the variables, we can put A into a canonical form, with blocks of paired
variables satisfying

[x̂j , p̂k] = iδjk (49)

together with some number (invariant under linear transformations) of pairs
with zero commutators. From this more abstract perspective, it is quite
natural to consider mixed quantum-classical dynamics.

18. One may consider locking of quantum to classical variables, so that
the effective low-energy degrees of freedom are a mixture of fundamental
degrees of freedom of mixed kinds. An interaction of the form

δĤ = µ2(x̂Q − x̂C)2 (50)

encourages such behavior.

19. Dyson has emphasized that severe difficulties arise when one at-
tempts to give direct experimental meaning to quantum effects in gravity.
Also, notoriously, straightforward quantization of gravity, in the form of
general relativity, apparently leads to ultraviolet divergences. Thus it may
be interesting to consider the possibility that characteristically gravitational
degrees of freedom are not quantized at all. The theoretical technology de-
veloped above can support mathematically consistent exploration of such
possibilities.
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