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Abstract

I review the calculation of geometric entropy in some simple cases,
and comment on more general cases.

This is the second of three notes on geometric entropy. It covers, in
detail, the evaluation of the entanglement entropy of an interval for 1+1
dimensional massless scalar field theory, and – by appeal to conformal sym-
metry and its anomaly – for conformal field theories in general. This is
followed by some brief remarks about more general situations.

The presentation in this part, as regards 1+1 dimensional theories, is
adapted from [1] and [2].

1 ”Bare Hands” Evaluation For Massless Scalar

1. Density Matrix as Path Integral

We shall evaluate the geometric entropy for a half-line, with appropri-
ate cutoffs (as will appear), in massless 1+1 dimensional scalar field
theory. Recall the ground state wave functional, whose arguments are
real-space field configurations, can be expressed as a path integral

Ψ(L,R) ∝
∫
Dφ e−A(φ) (1)

where1

A(φ) =
1

2π

∫
dτdσ ∂µφ∂

µφ (2)

1For better or worse, we are following the conventions of [1].
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is the Euclidean action, and the integral is over field configurations
defined on the lower half-plane τ ≤ 0 that vanish at τ → −∞, subject
to

φ(σ, τ = 0−) = θ(−σ)L(σ) + θ(σ)R(σ) (3)

From this we express – still formally – our (unnormalized) density
matrix as a similar path integral

ρ(R′, R) =
∫
Dφ e−A(φ) (4)

but now with φ to be integrated over field configuration in the whole
plane, vanishing at τ → ±∞, and subject to the discontinuous bound-
ary conditions

φ(σ+, τ = 0+) = R′(σ)
φ(σ+, τ = 0−) = R(σ) (5)

on the positive half-line. For the replica trick, we will also want to
use a similar expression for ρn, where the functional integral is taken
over an n-sheeted cover of the plane, obtained by extending the range
of the angular variable, with discontinuity of the form Eqn. (5) at the
initial and final copies of the real axis.

2. Step 1: Classical Action Rules

Since our functional integral involves a quadratic (Gaussian) positive-
define action. For purposes of the functional integral, we can simply
substitute the action of the classical solution with the given boundary
conditions. Indeed, shifting the field by the classical solution, A(φ)→
A(φcl. + φ̃), gives us the classical action term, a vanishing linear cross-
term (since φcl. is a solution), and the universal factor A(φ̃), which is
independent of the boundary conditions.

3. Steps 2: Stretched Coordinates and Poisson Kernel

It proves convenient, in this problem, to introduce complex variables
z = σ + iτ , z̄ = σ − iτ , and to introduce the “stretched”, logarithmic
coordinate

z = eη (6)

(This will also serve us well when we pass to more general conformal
field theories.) Then in the wave functional, where we integrate z over
the lower half-plane, we shall have Imη ≤ 0. In fact the whole lower z
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half-plane is mapped into the strip 0 ≤ Imη ≤ −π. The right half-line
σ > 0, τ = 0 is mapped onto the top of the strip (i.e., the real axis),
and the left half-line σ < 0, τ = 0 is mapped onto the bottom of the
strip.

To find the classical solutions, we call on our experience with elec-
trostatic potential theory. We are solving Laplace’s equation on a
half-space, the specified boundary values – a classic problem, solved
using the Poisson kernel. So we can write the answer directly:

φcl.(z, z̄) =
i

2π

∞∫
−∞

dw
( 1
w − z

− 1
w − z̄

) (
θ(−w)L(w) + θ(w)R(w)

)
(7)

where x runs over the real axis. (That this is the answer, can also be
verified easily using standard results in complex variable theory.)

4. Steps 3: Modes and Their Correlations

Now we express L,R in terms of their Fourier modes in the stretch
variable, according to

R(x) =
∫

dω√
4π|ω|

e−iωxrω

L(x) =
∫

dω√
4π|ω|

e−iωxlω (8)

where
w = (sign w) ex (9)

We have the reality conditions r−ω = r̄ω, l−ω = l̄ω. Inserting this into
the Poisson kernel Eqn. (7), we find

φ(η) =
∫

dω√
4π|ω|

× (10)

e−iωη
1

2 sinhπω
(eπωrω − lω)− e−iωη̄ 1

2 sinhπω
(e−πωrω − lω)

Again, one can verify directly that this is the required classical solution
– it is a holomorphic function2 with the required boundary values.

Note that the action integral, being of the form∫
dzdz̄ ∂φ∂̄φ (11)

2To be more precise: It is a real sum of holomorphic and anti-holomorphic pieces.
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can be evaluated directly in the transformed coordinates – the Ja-
cobeans for differentials and derivatives cancel.

Now the “miracle” of our stretched coordinates is that the action in-
tegral is diagonal in 2×2 blocks, corresponding to ±ω. This is a vast
simplification, which we would not have in truncated Fourier modes,
which involve all frequencies. The Fourier modes in the stretched vari-
ables correspond to powers in the original variables. Unruh introduced
their use in this sort of half-space problem. Using the integral∫

∂e−iω
′η∂̄e−iωη̄ = 2π δ(ω + ω′)ωeπω sinhπω (12)

we find

Acl. =
1
2

∫
dω

2π

(coshπω
sinhπω

(r̄ωrω + l̄ωlω)− 1
sinhπω

(r̄ωlω + l̄ωrω)
)

(13)

5. Steps 4: Gaussian Integrals and the Density Matrix

Given the action Eqn. (13), we have evaluated the wave function as

Ψ(φ) ∝ e−Acl.(φ) (14)

For our purposes, it is most pleasant that we can thereby get the den-
sity matrix, summing over the left half-line variables, and its powers
by doing Gaussian integrals over the mode variables lω!

Carrying through the integrals, we find, with a convenient normaliza-
tion

ρ(R′, R) =
∏
ω>0

sinhπω
coshπω

× (15)

exp
−1

2 sinh 2πω

(
(cosh 2πω(|rω|2 + |r′ω|2)− (r̄ωr′ω + r̄ω

′rω)
)

One can then compute higher powers by doing additional Gaussian
integrals. By induction, one proves

Tr ρn =
(2 sinhπω)2n

(2 sinhnπω)2

ρn

Tr ρn
=

∏
ω>0

sinhnπω
coshnπω

× (16)

exp
−1

2 sinh 2nπω

(
(cosh 2nπω(|rω|2 + |r′ω|2)− (r̄ωr′ω + r̄ω

′rω)
)
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6. Step 5: Geometric Entropy Result

Now we are ready to apply the replica trick, to get the geometric
entropy, according to

S(ρ) = (1− n d

dn
)n→1 ln Tr ρn (17)

acting on the traces in Eqn. (16). In fact we can throw away the nu-
merator, since its logarithm is linear in n, and its contribution cancels.
So we have, after a bit of algebra and an integration by parts,

S(ρ) ∼
∞∫
0

dω

?
8πω

e2πω − 1
(18)

To give a value to the question mark, and replace the ∼ with =, we
must put some grit into our formal procedures. If we regulate in a box
of length L, the density of modes will correspond to the measure dω

2π ,
and the mode-count L times that. So we find

S(ρ) = L

∞∫
0

dω
8πω

e2πω − 1
=

1
6
L (19)

In evaluating the integral, one expands the denominator in a power
series, and encounters Euler’s famous sum

∞∑
n=1

1
n2

=
π2

6
(20)

Now we should remember that L is the length in the stretched coor-
dinates, since we’ve done the calculation using those coordinates. In
terms of the original coordinates, we have

S(ρ) =
1
6

ln
Σ
ε

(21)

where Σ and ε are infrared and ultraviolet cutoffs.

7. What Does It Mean?

At first encounter it might seem quite an anticlimax, after so much
work, to get an answer that depends, in its entirety, on the cutoffs we
impose! But on reflection, we realize that this result is both appropri-
ate and meaningful:
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• The ultraviolet cutoff reflects the high degree of entanglement
between nearby points, which in turn reflects the fact that the
ground state is constructed in a compromise between the cost
of field gradients and the desirability of letting the wave func-
tional spread (heuristically: spontaneous vacuum fluctuations).
The fluctuations on small scales will be highly constrained, or
correlated, and a sharp division into L and R will expose those
correlations. In any case, the ultraviolet cutoff has a simple uni-
versal character, and as usual we can strive to define physically
meaningful quantities where that cutoff dependence cancels.
• The infrared cutoff is naturally associated with the volume (i.e.,

length) of our system. If we compare systems of different sizes,
and apply a common ultraviolet cutoff, then the difference be-
tween their geometric entropies is perfectly well-defined and fi-
nite, in the form

S(ρ1)− S(ρ2) =
1
6

ln
Σ1

Σ2
(22)

• Our massless boson theory is scale invariant, and so we cannot
expect to find an absolute, size-dependent result for the geometric
entropy of any particular system. But relative sizes are meaning-
ful, and we might hope to find dependence on size ratios. Con-
straint and hope are here reconciled, through the properties of
logarithms (with cutoff!). This is typical of how we get such “ab-
solutely meaningless, but relatively sensible” results in physics
– broadly similar shenanigans occur in BCS theory and in the
foundations of QCD, for example.

Now we will vastly generalize the preceding result, by exploiting the
techniques of 1+1 dimensional conformal field theory. This is a highly de-
veloped subject with a lovely and extensive, but intricate and specialized,
body of technique. Our use of conformal field theory technology will not
be not tremendously demanding, by the standards of the field, but it would
require a long digression to develop even what we use from scratch, and I
don’t want to pause for that3 My compromise will be to try to isolate a few
specific points where serious machinery is brought to bear, and state the
necessary results clearly, though without proof. There are several attractive
presentations of conformal field theory basics; [3] is a nice short entry-level
one.

3Nor to labor over it.
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1. Orientation in Conformal Field Theory

Conformal transformations are transformations that implement position-
dependent changes in length scale, but leave angles invariant. In terms
of a metric, we have

gµν(x) → eσ(x)gµν(x) (23)

– the so-called Weyl symmetry. Note that in this transformation we
do not transform coordinates. If we want to stay within the realm of
flat-space theories, we can look for pure coordinate changes (differo-
morphisms) that rescale the metric, but then refuse to transform the
metric! That implements a sort of inverse Weyl transformation: a dif-
feomorphism, followed by “undoing” the associated metric transforma-
tion through a Weyl transformation. These are the sort of conformal
transformations that will primarily concern us here. Conformal trans-
formations are, evidently, a generalization of scale transformations. In
1+1 dimensions, or in Euclidean 2 dimensions, the conformal trans-
formations make an infinite dimensional group. Indeed, it is a famous,
elementary result in the theory of complex variables that holomorphic,
or anti-holomorphic, mappings define conformal transformations. In
higher dimensions the conformal transformations are much more re-
stricted. Here I will stick to 2 dimensions.

On the physics side, there are large classes of Lagrangian field theories
that are conformal invariant at the classical level. It’s easy to see this
in the form of Weyl symmetry: For example, we can have several scalar
fields φj , and the action

A =
∫
d2x
√
g gαβF (φ)jk ∂αφj∂βφk (24)

where F is an arbitrary (positive) function. At the quantum level
things are not quite so simple, but there are still many known con-
structions that lead to conformal invariant field theories.

Conformal symmetry is different from more familiar symmetries in
that the Hamiltonian is covariant, rather than invariant. Thus we
do not get simply degenerate multiplets, but rather elaborate spectra
from representing conformal symmetry.

Conformal symmetry is used in string theory, especially in connection
with the world-sheet theory, in the construction of solvable models, in
the theory of low-dimensional critical phenomena, and in some other
chapters of condensed matter theory.
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The algebra associated with conformal symmetry has infinitesimal gen-
erators Lm corresponding to the infinitesimal versions of the complex
mappings z → zm. They satisfy the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 (25)

The first term on the right-hand side has a simple geometrical origin,
but the second term requires comment. It is a sort of anomaly. Once
we exponentiate the operators, it is a pure phase term, so it renders the
representation of conformal symmetry into a projective representation
– as with the spin-1

2 representation of rotations, one cannot fix the
phases while remaining consistent with the group structure. c is a
number, the central charge. Its value varies from one conformal field
theory to another.

The central charge appears in several other contexts. It is the coeffi-
cient in the singularity that arises when two insertions of the energy-
momentum tensor approach one another, and it appears in the trans-
formation law for the energy-momentum tensor under conformal map-
pings, where it governs an “anomalous” correction to normal tensor
behavior. That feature will play a key role below.

Another feature of conformal field theories that we will exploit is mod-
ular invariance. It arises when one considers the behavior of the the-
ory on a torus T 2, regarded as a one-dimensional complex manifold.
Global conformal transformations can change tori of different shapes
into one another, but not in entirely arbitrary ways. The ratio τ of
the lengths of real and imaginary cycles (with respect to some complex
parameterization) is called the modulus of the torus. Different choices
of complex parameters can lead to different modular parameters, ac-
cording to the transformation law

τ → aτ + b

cτ + d
(26)

with a, b, c, d integers and ad − bc = 1. In particular, with the choice
a = d = 0; b = −c = 1, we can interchange the sizes of the two cycles.
That possibility will be very important to us below.

2. Geometric Entropy as an Invariant

In the quantum theory, global conformal transformations maintain the
topology of inside and out and leave the vacuum invariant. Therefore
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the geometric entropy, relative to vaccum, associated with a given
region is invariant under such transformations!

3. Mapping to Thermality

I will now revisit the calculation of geometric entropy for an interval
in massless scalar field theory – which is, of course, a conformal field
theory – using different techniques, emphasizing the conformal map-
ping. One of these techniques generalizes easily to general conformal
field theories.

We take as our universe the interval [0,Λ) with periodic boundary
conditions. We take our subsystems to be based on R1 = [ε1,Σ− ε2)
and R2 = [Σ+ε2,Λ−ε1), thus introducing ultraviolet regulators ε1, ε2.
Their implementation will emerge in the course of the calculation. We
will denote the spatial variable by σ, and extend it to the complex
variable ζ = σ + iτ for a region of negative τ .

Our first conformal mapping,

w = −
sin π

Λ(ζ − Σ)
sin π

Λζ
(27)

maps R1 into the interval

R1 = [
sin π

ΛΣ
sin π

Λε1
,

sin π
Λε2

sin π
ΛΣ

) (28)

on the positive real axis and R2 to the symmetrical interval on the
negative real axis. We are aiming to project on to the ground state
with an appropriate functional integral. We can do this by taking our
standard ∫

Dφ e−A(φ)

over the annular region we sweep out as we rotate R1 into R2 by coun-
terclockwise around the origin as axis, imposing vanishing boundary
conditions on the bottom of that big annulus. This, operationally,
is how we implement our regulators. The details of that implementa-
tion should not matter, once we extract cutoff-independent (universal)
properties.

Now we make a second conformal mapping

z =
lnw
k

(29)
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where k is a redundant “check” parameter, which has better cancel
from our final result. After the mapping, our annulus becomes a rect-
angle, bounded by the image of R1 on the real axis, a parallel image of
R2 on the line Im z = −π, and sides of length π

k . The common length
of R1,R2 is

L =
2
κ

ln (
Λ
πε

sin
πΣ
Λ

) (30)

where ε =
√
ε1ε2.

To get the traces we require for the replica trick, we need to extend
region downward by a factor n, identify the top and bottom, and sum.
But now we recognize that this is exactly the procedure we’d use to
calculate the thermodynamic partition function, at inverse tempera-
ture

β =
2πn
k

(31)

in a box of length L, where we’ve imposed periodic boundary condi-
tions. Our formula for completing the calculation of the geometric en-
tropy, through the replica trick, by going from the traces to geometric
entropy, is identical to the statistical mechanic recipe for calculating
the thermodynamic entropy of the gas from the partition function,
after identifying n ∝ β, as we’ve reviewed previously. Since we’ve
already done a very similar calculation, and the statistical mechanics
problem is standard in any case, I’ll just quote the answer

S =
1
3

ln (
Λ
πε

sin
πΣ
Λ

) ∝ LT =
L

β(n = 1)
(32)

(We have a factor of two here, compared to the previous result, because
our intervals now have two distinct ends.)

There is another way of looking at the final stages of this calculation,
which we will exploit momentarily. The partition function of our mass-
less scalar field on a torus with sides L, 2πn

k can be written in the form
that emerges naturally from conformal field theory

Z =
1
ηη̄

η = q
1
24

∞∏
m=1

(1− qm) (33)

where

q = e2πiτ
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τ =
2πin
kL

(34)

τ , the ratio of sides, is the modular parameter. This may look unfa-
miliar at first sight, but after spelling out

1− qk = 1− e−
4π2nr
kL (35)

we recognize the product as arising from the contributions of the vari-
ous momentum modes to the partition function, where the exponential
encodes the Boltzmann factor, and we sum over the possible occupan-
cies. We have factors in η and in η̄ for the left-moving and right-moving
modes. The prefactor q

1
24 renders the partition function modular in-

variant. It has no effect on our calculation of geometric entropy, since
its logarithm is linear in n, and cancels in the operation 1− n d

dn .

Now if carried through our mappings in terms of the abstract Hamilto-
nians L0, L̄0, available in the general conformal field theory, and kept
track of its transformations we would arrive through similar steps at
the recognizable generalization

Z = q−
c
24 q̄−

c̄
24 tr qL0 q̄L̄0 (36)

where now we allow different central charges, as well as different Hamil-
tonians, for the two directions of propagation. In the free boson case
we have (famously) c = c̄ = 1.

4. Modular Transformation

If we make a modular transformation, in effect interchanging the sides
of the torus, we change n → 1

n . Also, importantly, we exchange the
large box size L for a very low temperature! Thus the contributions
of the excitations go away, and

tr qL0 q̄L̄0 → 1 (37)

The whole answer comes from the funny prefactors – which no longer
cancel, due to the change in sign of n d

dn ! In this way, we derive the
general answer

S =
c+ c̄

6
ln (

Λ
πε

sin
πΣ
Λ

) (38)

The replacement of complicated high-energy mode sums by contribu-
tions of a few (or one) state is a “typical miracle” in the application
of anomalous symmetries.
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5. What Does It Mean?

By invoking more powerful machinery, we have not only re-derived our
earlier result for geometric entropy in massless boson theory in a more
conceptual way, but also vastly generalized it. Our earlier interpretive
remarks, in the preceding section, remain pertinent in the general case,
and there are a few additional points of note:

• geometric entropy generally very difficult to compute, and there
are few analytical results, even for free field theory. It is remark-
able, therefore, that we find a simple, rigorous result applicable to
a broad class of theories, including some very complicated ones,
with highly non-trivial interactions.

• reading it the other way, the geometric entropy supplies a new
characterization of the central charge, whose physical meaning is
direct and easily stated

• experiments? numerical; diagnostic

2 Heat Kernel and Higher Dimensions

Another technique we can apply, in conjunction with the replica trick, to cal-
culate some aspects of geometric entropy is the so-called heat kernel method,
first used in this context in [4]. It is especially powerful as regards the con-
tributions from high-frequency modes, and can be used in any dimension.

Here I will illustrate how the method works by reference to the same
circle of problems we’ve been considering. We consider, in particular, Eu-
clidean field theory on the space Cδ×MD−2, where Cδ is a two dimensional
cone of radius L and deficit angle δ and MD−2 is a flat D − 2 dimensional
transverse space with total volume VD−2. We will consider, specifically, the
theory of a free massive scalar field of this space, with the goal of obtaining
the geometric entropy of a half-line times MD−2, tracing over a complemen-
tary half-line times MD−2. The relevant “partition function” path integral
is Gaussian, and the result can be expressed as a functional determinant

lnZδ = − 1
2

ln det(−∆ + µ2) (39)

where ∆ is the Laplacian and µ the mass. The heat kernel is defined in
terms of the eigenvalues −λn of the Laplacian as

ζ(t) = tr et∆ =
∑
n

e−λnt (40)
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The reason for the name, “heat kernel”, deserves brief comment. Clearly we
have

(
∂

∂t
−∆)et∆ = 0 (41)

so et∆, acting on a function f(x, 0), produces a solution f(x, t) of the heat
equation. If we express f(x, 0) = δ(x), and write the Dirac δ(x) as the sum

δ(x) =
∑
n

φn(x)φn(x) (42)

over a complete set of eigenvalues, we see that the heat kernel describes
the evolution starting from a δ function source. At the risk of belaboring
the obvious, let me also comment that the heat equation is the imaginary
time version of the Schrödinger equation, so that we are dealing with a close
relative of the unitary evolution operator e−iHt.

Using the heat kernel, we can define a regulated version of our functional
determinant through

ln det(−∆ + µ2) = −
∞∫
ε2

dt

t
ζ(t)e−µ

2t (43)

Let me add a few words of explanation to this construction. Its basic unit
is the integral

I(u) ??=
∞∫
0

dt

t
e−tu (44)

This integral is divergent at the t = 0 end. Before facing up to that embar-
rassment, let’s note that the formal derivative

d

du
I(u) =

∞∫
0

dt
e−tu =

1
u

(45)

which suggests that in some sense I(u) = lnu, which is what we want.
To make this more legitimate and precise, let us consider the well-defined
differences

I(u;µ2)− I(u; ν2) =
∞∫
ε2

dt

t
ζ(t)e−µ

2t −
∞∫
ε2

dt

t
ζ(t)e−ν

2t (46)

Then we have, by a kosher version of the same mathematics,

I(u;µ2)− I(u; ν2) = ln(u+ µ2)− ln(u+ ν2) (47)
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Now on physical grounds we expect that as the mass ν →∞, we are entitled
to ignore the very massive field – and that is what we do! This kind of
procedure, in the context of quantum field theory and its renormalization,
is called Pauli-Villars regulation. In that context one can often, by careful
attention to the limiting process, extract finite, “renormalized” values for
physical quantities as the fictitious regulator fields are removed. It is an
interesting challenge, to identify quantities of this type related to geometric
entropy. (This would supply, I think, a rigorous version of the hand-waving
discussion of “universality” above.)

Having motivated the formal maneuver in Eqn.(43) – with ε = 0! – we
then introduce a different regulator, namely ε, that has a similar qualitative
effect, and removes the need for a separate, explicit Pauli-Villars procedure.
Indeed, by excluding small t in the integral, we effectively kill the contribu-
tion of very large eigenvalues (and, for large masses, they’re all large).

There are powerful mathematical results relating the t → 0 behavior of
heat kernels to the geometry of the underlying manifold. These results make
precise, and generalize, the “modes per unit volume” arguments physicists
invoke in many contexts, such as the treatment of black-body radiation [5].
On the two-dimension manifold Cδ one has, for example

ζ2(t) = t−1 2π − δ
8π

L2 +
1
12

(
2π
δ
− δ

2π
) + O(t/L2) (48)

One the full manifold Cδ ×MD−2 there is an extra factor

VD−2

(4πt)
D−2

2

(49)

from the trivial Laplacian on the transverse space. (In that case, one is
literally solving the heat equation! Assembling the pieces, we have

S =
VD−2

(4π)
D−2

2

∞∫
ε2

dt

t
D
2

e−µ
2t (

1
12

+ O(t/L2)) (50)

This leads, for D = 2, back to our earlier result for the ultraviolet diver-
gence, with the mass appearing only in subleading terms

S2 =
1
6

ln
1
ε

+ ... (51)

while in higher dimensions the transverse space modifies this to

SD =
VD−2

(2
√
π)D−2

(
D

2
− 1) ε2−D (52)
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In the black hole context, VD−2 is the area of the horizon.
For D > 2 the numerical coefficient is non-universal, because it depends

on the scale of the cutoff. One can hope to extract universal quantities from
sub-leading terms.

In the black hole case, we do get a leading contribution proportional to
the area. If we choose the cutoff to be of order the Planck scale, we can
imagine getting some or all of the standard black hole entropy, formally, from
entanglement. At present, however, no justification for such procedures is
on the horizon.
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