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Abstract

Entropy is a nineteenth-century invention, with origins in such
practical subjects as thermodynamics and the kinetic theory of gases.
In the twentieth century entropy came to have another, more abstract
but more widely applicable interpretation in terms of (negative) infor-
mation. Recently the quantum version of entropy, and its connection
to the phenomenon of entanglement, has become a focus of much at-
tention. This is a self-contained introduction to foundational ideas of
the subject.

This is the first of three notes around centered around the concept of
entropy in various forms: information-theoretic, thermodynamic, quantum,
and black hole. This first note deals with foundations; the second deals
mainly with black hole and geometric entropy; the third explores variational
principles that flow naturally from the ideas.

A good reference for this first part is Barnett, “Quantum Information”
[1], especially chapters 1, 8, and the appendices.

1. Classical Entropy and Information

As with many scientific terms taken over from common language, the
scientific meaning of information is related to, but narrower and more
precise than, the everyday meaning. We think of information as re-
lieving uncertainty, and this is the aspect emphasized in Shannon’s
scientific version. We seek a measure I(pj) of the relief of uncertainty
gained, when we observe the actual result j of a stochastic event with
probability distribution pj . We would like for this measure to have
the property that the information gain from successive observation of
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independent events is equal to the sum of the two gains separately.
Thus

I(pjqk) = I(pj) + I(qk) (1)

Thus we are led to
I(pj) ∝ − ln pj (2)

The choice of proportionality constant amounts to a choice of the base
of logarithms. For physics purposes it is convenient to take equality in
Eqn. (information)1. With that choice, a unit of information is called
a nat. Increasingly ubiquitous, however, is the choice I(pj) = − log2 p.
In this convention, observation of the outcome of one fifty-fifty event
conveys one unit of information; this is one bit. I will generally stick
with ln, but with the understanding that the natural logarithm means
the logarithm whose base seems natural in the context2 .

Given a random event described by the probability distribution pj ,
we define its entropy S(p) to be the average information gained upon
observation:

S(p) = −
∑
j

pj ln pj (3)

For a two-state distribution, the entropy can be expressed as a function
of a single number, the probability of (either) event:

S2(p) = −p ln p− (1− p) ln(1− p) (4)

This is maximized, at one nat, when p = 1
2 .

This notion of entropy can be used as a heuristic, but transparent and
basically convincing, foundation for statistical mechanics, as follows.
Suppose that we have a system whose energy levels are Ej . We observe
that a wide variety of systems will, perhaps after some flow of energy,
come into equilibrium with a large ambient “heat bath”. We suppose
that in equilibrium the probability of occupying some particular state j
will depend only on Ej . We also assume that the randomizing influence
of interactions with the heat bath will obliterate as much information
about the system as can be obliterated, so that we should maximize the

1As will become clear shortly, the convention is closely related to the choice of units
for temperature. If we used base 2, for instance, it would be natural to use the Maxwell-

Boltzmann factor 2−E/T̃ in place of e−E/T , which amounts to defining T̃ = T ln 2.
2In the same spirit, here is my definition of “naturality” in physics: Whatever nature

does, is natural.
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average information, or entropy, we would gain by actually determining
which state occurs. Thus we are led to the problem of maximizing
S({pj}) under the constraints that the average energy is some constant
E and of course that the pj sum to unity. That problem is most
easily solved by introducing Lagrange multipliers λ and η for the two
constraints. Then we get

δ

δpk

∑
j

(−pj ln pj + λpjEj + ηpj) = − ln pj − 1 + λEj + η = 0 (5)

so that
pj =

η

e
eλE (6)

We can use the two disposable constants η, λ to satisfy the two con-
straints ∑

j

pj = 1

∑
j

pjEj = E (7)

With − 1
T ≡ λ, we find that we get the Maxwell-Boltzmann distribu-

tion

pj =
e−Ej/T∑
k
e−Ek/T

(8)

It is revealing that the inverse temperature appears as a Lagrange
multiplier dual to energy. (Inverse temperature is in many ways more
fundamental than temperature. For example, by using inverse temper-
ature we would avoid the embarrassment that negative temperature
is hotter than infinite temperature, as opposed to colder than zero
temperature!)

It is convenient to introduce the inverse temperature variable β ≡ 1
T

and the partition function

Z(β) ≡
∑
k

e−Ek/T =
∑
k

e−βEk (9)

We find for the energy and the information-theoretic entropy

E = − ∂ lnZ
∂β

(10)

Sinf. =
∑
k

(βEk + lnZ)
e−βEk

Z
= βE − lnZ
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or
lnZ = − β(E − TSinf.) (11)

where the overline denotes averaging over the Boltzmann distribu-
tion. Now in statistical mechanics we learn that lnZ is related to the
Helmholtz free energy F = E − TS as

lnZ = − βF (12)

And so we conclude that the thermodynamic and information-theoretic
entropy are equal

S = Sinf. (13)

A much more entertaining and directly physical argument for the close
connection of information entropy and thermodynamic entropy arises
from consideration of Szilard’s one molecule thought-engine, which
strips Maxwell’s demon down to its bare essence. We imagine a box of
volume V that contains a single molecule, in equilibrium with a heat
bath at temperature T . (See Figure 1.) A partition can be inserted
midway in the box, and can move frictionlessly toward either end,
where it can be removed. One also has weights attached to pulleys
on either side, either one of which can be engaged by attachment to
an extension of the partition, or disengaged onto a fixed pin. Now if
when the partition is inserted the appropriate pulley is engaged, so
that expansion of the one molecule “gas” lifts a weight, we can extract
work from the heat bath! We can also let the gas fully expand, remove
the partition, and start the cycle over again. This process appears, on
the face of it, to contradict the laws of thermodynamics.

The work done by the gas is

W =
V∫

V/2

PdV = T ln 2 (14)

using the ideal gas law PV = T . Thus the entropy of the heat bath
decreases by

∆Sbath = − W

T
= − ln 2 (15)

To reconcile this result with the second law of thermodynamics, we
need to find some additional change in entropy that compensates this.
A human experimenter who is somehow locating the molecule and
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deciding which pulley to engage is too complicated and difficult to
model, so let us replace her with a simple automaton and an indi-
cator gauge. The indicator gauge settles into one or another of two
settings, depending on the location of the molecule, and the automa-
ton, in response, engages the correct pulley. And now we see that the
state of the total system has settled into one of two equally likely al-
ternatives, namely the possible readings of the indicator gauge. This
state-outcome contributes exactly one nat:

∆Spointer = − ln
1
2

= ln 2 (16)

Thus the total entropy does not change. This is what we expect for a
reversible process – and we might indeed reverse the process, by slowly
pushing the partition back to the center, and then removing it while
at the same time driving the indicator – if that indicator is frictionless
and reversible! – back to its initial setting.

On the other hand, if the indicator is “irreversible” and does not auto-
matically return to its initial setting, we will not get back to the initial
state, and we cannot literally repeat the cycle. In this situation, if we
have a store of indicators, their values, after use, will constitute a
memory. It might have been in any of 2N states, but assumes (after
N uses) just one. This reduction of the state-space, by observation,
must be assigned a physical entropy equal to its information theoretic
entropy, in order that the second law remain valid. Conversely, the act
of erasing the memory, to restore blank slate ignorance, is irreversible,
and is associated with net positive entropy N ln 2. Presumably this
means, that to accomplish the erasure in the presence of a heat bath
at temperature T , we need to do work NT ln 2.

2. Classical Entanglement

We3 say that two subsystems of a given system are entangled if they
are not independent. Quantum entanglement can occur at the level of
wave functions or operators, and has some special features, but there
is nothing intrinsically quantum-mechanical about the basic concept.
In particular, if we define composite stochastic events that have two
aspects depending on variables aj , bk, it need not be the case that the
joint probability distribution factorizes as

pAB(aj , bk)
independent

= pA(aj)pB(bk) (17)
3At least, the more bombastic among us.
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where the separate (also called marginal) distributions are defined as

pA(aj) ≡
∑
k

pAB(aj , bk)

pB(bk) ≡
∑
j

pAB(aj , bk) (18)

As indicated in Eqn. (17), if the joint distribution does factorize we
say the variables are independent. Otherwise they are entangled.

I should also mention that the concept of wave function entanglement,
while profoundly strange, is hardly new or unfamiliar to practition-
ers of the art. The common wave functions of atomic and molecular
physics live in many-dimensional configuration spaces, contain spin
variables, etc. and quite generally do not factorize. Almost every prac-
tical use of quantum mechanics tests the existence of entanglement,
and its mathematical realization in the (tensor product) formalism.

Entropy is a good diagnostic for entanglement. We will prove momen-
tarily that the entropy of the joint distribution is equal to or greater
than the sum of the entropies of the separate distributions:

S(A) + S(B) ≥ S(AB) (19)

with equality if and only if the distributions are independent. The
quantity

S(A : B) ≡ S(A) + S(B)− S(AB) ≥ 0 (20)

is called the mutual information between A and B. It plays an impor-
tant role in information theory. (See, for example, the excellent book
[2].)

3. Inequalities

There are several notable inequalities concerning entropy and related
quantities.

One concerns the relative entropy S(p ‖ q) of two probability distri-
butions on the same sample space, as follows:

S(p ‖ q) ≡
∑
k

pk ln
pk
qk
≥ 0 (21)

Indeed, this quantity goes to infinity at the boundaries and is mani-
festly bounded below and differentiable, so at the minimum we must
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have
δ

δqj
(
∑
k

pk ln
pk
qk
− λ(

∑
l

ql − 1)) =
pj
qj
− λ = 0 (22)

where λ is a Lagrange multiplier. This implies pj = qj , since both are
normalized probability distributions.

The mutual information inequality Eqn. (20) is a special case of the
relative entropy inequality, corresponding to p = pAB, q = pApB, as
you’ll readily demonstrate.

Other inequalities follow most readily from concavity arguments. The
basic entropy building-block −p ln p is, as a function of p, concave in
the relevant region 0 ≤ p ≤ 1. (See Figure 2.) One sees that if we
evaluate several samples of this function, the average of the evaluations
is greater than the evaluation of the average. Thus we have several
probability distributions p(µ), then the average distribution has greater
entropy:

S(λ1p
(1) + ...+ λnp

(n)) ≥ λ1S(p(1)) + ...+ λnS(p(n)) (23)

where of course λj ≥ 0,
∑
j
λj = 1. We may re-phrase this in a way

that will be useful later, as follows. Suppose that

p′j =
∑
k

λjkpk∑
j

λjk = 1

∑
k

λjk = 1

λjk ≥ 0 (24)

Then
S(p′) ≥ S(p) (25)

It is also natural to define conditional entropy, as follows.

The conditional probability p(aj |bk) is, by definition, the probability
that aj will occur, given that bk has occurred. Since the probability
that both occur is p(aj , bk), we have

p(aj |bk)p(bk) = p(aj , bk) (26)
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From these definitions, we can derive the celebrated, trivial yet pro-
found theorem of Bayes

p(bk|aj) =
p(bk)p(aj |bk)

p(aj)
(27)

This theorem is used in statistical inference: We have hypotheses that
hold with “prior” probabilities bk, and data described by the events
aj , and would like to know what the relative probabilities of the hy-
potheses look like, after the data has come in – that is, the p(bk|aj).
Bayes’ theorem allows us to get to those from (presumably) calculable
consequences p(aj |bk) of our hypotheses.

Similarly, the conditional entropy S(A|B) is defined to be the aver-
age information we get by observing a, given that b has already been
observed. Thus

S(A|B) = −
∑
k

p(bk)(−
∑
j

p(aj |bk) ln p(aj |bk)) (28)

Upon expanding out the conditional probabilities, one finds the satis-
fying result

S(A|B) = S(AB)− S(B) (29)

This can be regarded as the entropic version of Bayes’ theorem.

4. Quantum Entropy

A useful quantum version of entropy was defined by von Neumann, and
it is generally referred to as von Neumann entropy. It is defined, for
any (not necessarily normalized) positive definite Hermitean operator
ρ as

S(ρ) = − Tr ρ ln ρ
Tr ρ

(30)

In most applications, ρ is the density matrix of some quantum-mechanical
system.

This is a natural definition, for several reasons. First, it reduces to the
familiar definition of entropy, discussed previously, when ρ is diagonal
and we regard its entries as defining a probability distribution. Second,
we can use it, as we used the classic entropy, to provide a foundation for
statistical mechanics. Thus we seek to maximize the (von Neumann)
entropy subject to a fixed average energy. Using Lagrange multipliers,
we vary

−Tr ρ ln ρ+ λ(TrρH − E) + η(Trρ− 1) (31)
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Now when we put ρ → ρ + δρ, we have to be concerned that the
two summands might not commute. Fortunately, that potential com-
plication does not affect this particular calculation, for the following
reason. Only the first term is nonlinear in ρ. Now imagine expand-
ing the function ρ ln ρ as a power series (around some regular point),
varying term by term, and focusing on the terms linear in δρ. Because
we are inside a trace, we can cyclically permute, and bring δρ to the
right in every case – in other words, we can do calculus as if ρ were
simply a numerical function. So the variation gives

Tr(− ln ρ− 1 + λH + η)δρ = 0 (32)

Since this is supposed to hold for all δρ, we find that every matrix
element of the quantity in parentheses must vanish, and following the
same steps as we did earlier, in the classical case, we get

ρ =
e−βH

Tr e−βH
(33)

This is indeed the standard thermal density matrix. Furthermore, if
we use this ρ to evaluate thermodynamic entropy, we find that the
expectation value of the thermodynamic entropy is given by its von
Neumann entropy −Tr ρ ln ρ.

Elementary properties of the von Neumann entropy include:

• It is invariant under change of basis, or in other words under
unitary transformations

ρ → UρU−1 (34)

• If ρ is the density matrix of a closed quantum dynamical system,
the entropy will not change in time. (Indeed, the density matrix
evolves unitarily.)

• If ρ is the density matrix of a pure state, the entropy vanishes.

The last two properties illustrate that some coarse-graining must be
involved in passing from the von Neumann entropy to thermodynamic
entropy, for an isolated system.

A relative entropy inequality, in the form

Tr ρ (
ln ρ
Trρ
− lnσ

Trσ
) ≥ 0 (35)
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is valid in the quantum case, as is a concavity inequality

S(λ1ρ
(1) + ...+ λnρ

(n)) ≥ λ1S(ρ(1)) + ...+ λnS(ρ(n)) (36)

One also has the “erasure” result, that setting all the off-diagonal
entries in a density matrix to zero increases its entropy. Indeed, let the
|φj〉 be the eigenvectors of the new density matrix, associated with the
eigenvalues p′j , and the |ψk〉 the eigenvectors of the old density matrix,
with associated with the eigenvalues (probabilities) pk. We have

p′j = ρjj =
∑
k

〈φj |ψk〉pk〈ψk|φj〉 =
∑
j

λjkpk

λjk ≡
∑
k

|〈φj |ψk〉|2 (37)

This gives us the set-up anticipated in Eqn.(24), and the result follows.

The composite of systems A, B will live on the Hilbert space HA⊗HB.
We are here using “composite” in a very broad sense, simply to mean
that we have a division of the dynamical variables into distinct sub-
sets. If the density matrix of the composite system is ρAB, we derive
subsystem density matrices by taking traces over the complementary
variables

ρA = TrB ρAB
ρB = TrA ρAB (38)

The joint density matrix ρAB is the quantum version of a joint prob-
ability distribution, and we the subsystem density matrices are the
quantum version of marginal distributions. As a special case of the
quantum relative entropy inequality, we have the inequality

S(A : B) = S(A) + S(B)− S(AB) ≥ 0 (39)

also in the quantum case.

We might expect that S(A : B) is sensitive to the quantum entangle-
ment of systems A and B, and provides a measure of such entangle-
ment. As a minimal test of that intuition, let us consider the singlet
state of a system of two spin-1

2 particles:

|ψ〉AB =
1√
2

(| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉) (40)
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with the corresponding density matrix (in the basis | ↑↑〉, | ↑↓〉, | ↓↑
〉, | ↓↓〉

1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (41)

Tracing over either subsystem, we get

ρA = ρB =
1
2

(
1 0
0 1

)
(42)

with von Neumann entropy of 1 nat.

5. Quantum Entanglement and Quantum Entropy

So far, the properties of the quantum entropy have appeared as direct
analogues of the properties of classical entropy. Now we will discuss a
dramatic difference. For the classical entropy of a composite system
we have

Scl.(AB) ≥ Max (Scl.(A), Scl.(B)) (43)

– the composite system always contains more untapped information
than either of its parts. In the quantum case, the analogue of Eqn.(43)
fails dramatically, as we will now demonstrate. Thus it is not correct
to think of the quantum entropy as a measure of information, at least
not in any simple way.

To bring out the difference, and for many other purposes, it is useful
to develop the Schmidt decomposition. The Schmidt decomposition
is a normal form for wave functions in a product Hilbert space. In
general, we can write our wave function

ψAB =
∑
ab

cab|a〉 ⊗ |b〉 (44)

in terms of its coefficients relative to orthonormal bases |a〉, |b〉. The
Schmidt decomposition gives us a more compact form

ψAB =
∑
ab

sk|φk〉 ⊗ |ψk〉 (45)

for a suitable choice of orthonormal vectors |φk〉, ψk〉 in the two compo-
nent Hilbert spaces. (These may not be complete bases, but of course
they can be beefed up to give bases.)
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Assuming Eqn. (45), we see that the φk are eigenvectors of the density
matrix ρA, with eigenvalues |sk|2. This gives us a strategy to prove it!
That is, we define the |ψk〉 to be the eigenvectors of ρA4. Writing out
what this means in terms of the general expansion

|a〉 =
∑
k

dak|φk〉 (46)

we have

(ρA)k′k =
∑
b

c∗a′bcab|a〉〈a′|

=
∑
b,a′,a

c∗a′bd
∗
a′k′cabdak |φk〉〈φk′ | (47)

Matching coefficients, we have∑
b,a′,a

c∗a′bd
∗
a′k′cabdak = δk′k|sk|2 (48)

for the non-zero, and therefore positive, eigenvalues |sk|2.

Going back to Eqn. (44), we have

ψAB =
∑
ab

cabdak|φk〉 ⊗ |b〉 (49)

so the candidate Schmidt decomposition involves

|ψk〉 =
∑
ab

skcabdak|b〉 (50)

and it only remains to verify that the |ψk〉 are orthonormal. But that
is precisely the content of Eqn. (48).

Note that the phase of sk is not determined; it can be changed by
re-definition of |φk〉 or |ψk〉.
Purification is another helpful concept in considering quantum entropy
and entanglement. It is the observation that we can obtain any given
density matrix ρ by tracing over the extra variables for a pure state in
a composite system. Indeed, we need only diagonalize ρ:

ρ =
∑
k

|ek|2|φk〉〈φk| (51)

4Including zero eigenvalue eigenvectors, if necessary, to make a complete basis.
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and consider the pure state

ψAB =
∑
k

ek|φk〉 ⊗ |ψk〉 (52)

where we introduce orthonormal states |ψk〉 in an auxiliary Hilbert
space. Then manifestly ρ = ρA for the pure state ψAB.

By combining the Schmidt decomposition and purification, we can
draw two notable results concerning quantum entropy.

• First: The demise of Eqn. (43), as previously advertised. Indeed,
the entropy of a pure state vanishes, so S(AB) = 0 in the purifi-
cation construction – but ρA can represent any density matrix,
regardless of its entropy S(A).

• Second: If ρA and ρB are both derived from a pure state of the
composite system AB, then S(A) = S(B). This follows from the
Schmidt decomposition, which shows that their non-zero eigen-
values are equal, including multiplicities.

The Araki-Lieb inequality, which generalizes the second of these re-
sults, affords addition insight into the nature of quantum entropy. We
consider again a composite system AB, but no longer restrict to a pure
state. We purify our mixed state of AB, to get a pure state ΨABC . For
the entropies defined by tracing different possibilities in that system,
we have

S(A) = S(BC)
S(B) = S(AC)
S(C) = S(AB) (53)

and therefore(
S(A) + S(C)− S(AC) ≥ 0

)
⇒ S(AB) ≥ S(B)− S(A) (54)

By symmetry between A and B, we infer

S(AB) ≥ |S(A)− S(B)| (55)

which is the Araki-Lieb inequality. We see that correlations between
A and B can “soak up” no more information than the information in
the smaller (that is, less information-rich) of them.
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6. More Advanced Inequalities

Finally let us briefly discuss two additional inequalities, that might
benefit from additional clarification or support further application.

Strong subadditivity applies to a composite system depending on three
components A,B,C. It states

S(ABC) + S(C) ≤ S(AC) + S(BC) (56)

Alternatively, if we allow A and B to share some variables, we can
re-phrase this as

S(A ∪B) + S(A ∩B) ≤ S(A) + S(B) (57)

The known proofs of this are intricate and uninformative; an incisive
proof would be welcome, and might open up new directions.

We also have a remarkable supplement to the concavity inequality, in
the form

−
∑
k

λk lnλk +
∑
k

λkS(ρk) ≥ S(
∑
k

λkρk) ≥
∑
k

λkS(ρk) (58)

with the usual understanding that the λk define a probability distribu-
tion and the ρk are normalized density matrices. The second of these
is just the concavity inequality we discussed previously, but the first –
in the other direction! – is qualitatively different.

We can prove it, following [1], in two stages.

First, let us suppose that the ρk are density matrices for pure states,
ρk = |φk〉〈φk|, where now the |φk〉 need not be orthonormal. We can
purify ρ using

ΨAB =
∑
k

√
pk|φk〉 ⊗ |ψk〉 (59)

where the |ψk〉 are orthonormal – clearly, tracing over the B system
gives us ρ. On the other hand, if we work in the |ψk〉 basis, and throw-
away off-diagonal terms, the modified density matrix reduces to simply
pk along the diagonal, and has entropy −

∑
k
pk ln pk. But as we saw,

this erasure operation increases the entropy. Thus we have

−
∑
k

pk ln pk ≥ S(B) = S(A) (60)

That gives us what we want, in this special case.
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In the general case, let us express each ρk in terms of its diagonaliza-
tion, so

ρk =
∑
j

P jk |φ
j
k〉〈φ

j
k|

ρ =
∑
jk

pjP
j
k |φ

j
k〉〈φ

j
k| (61)

According to our result for the special case, we have

−
∑
jk

(pjP
j
k ) ln(pjP

j
k ) ≥ S(ρ) (62)

But we can evaluate the left-hand side as

−
∑
jk

(pjP
j
k ) ln(pjP

j
k ) = −

∑
jk

pjP
j
k ln pj −

∑
jk

pjP
j
k lnP jk

= −
∑
j

pj ln pj +
∑
j

pjS(ρj) (63)

This completes the proof.

It is quite unusual to have two-sided variational bounds on a quan-
tity of physical interest. As we shall see, one can derive useful vari-
ational bounds from entropy inequalities. Even when they accurate
numerically, however, variational estimates are usually uncontrolled
analytically. Use of two-sided bounds might improve that situation.
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