Survey of Symmetry and Conservation Laws (lecture notes)

The theme of symmetry, or invariance under transformation, dominates our understanding of the microcosmos. The more we unveil how Nature works, the more we reveal Her love of symmetry.

In quantum mechanics there are deep connections among symmetry, conservation laws, and "quantum numbers". The most natural way to understand the different particles is to locate them relative to the symmetries they embody. In many ways, the symmetries are more fundamental and more interesting than the particles as such.

In practice, that approach amounts to defining particles by specifying their quantum numbers. That's what we'll do. I'll be spell out how those connections play out for the fundamental ingredients of particle physics, i.e. the (and other important, even if not-so-basic) particles. This will be quick work once we've got the symmetries.

It is important to recognize that there are many variations on the theme of symmetry. We will be discussing, in addition to (possibly) rigorous symmetries: approximate symmetries, spontaneously broken symmetries, methodological symmetries (gauge invariance is of this kind), asymptotic symmetries, anomalous symmetries (mostly next semester). Many of the sharpest questions in particle physics – the kinds where progress leads to Nobel Prizes – including several that are at the forefront of research today, center around the implementation of symmetry, as we'll see.

Here's a little table indicating the different symmetries I'll be surveying in this lecture, with a few orienting remarks about each. More detailed comments on Poincaré symmetry appear in a separate file.

symmetry	conserved quantities	$\underline{comments}$
Space-Time (Poincare)	energy, momentum,	uniformity of physical
Symmetry	angular momentum,	law:
5	center of mass velocity;	needs to be exact for
	particles: mass and	consistent general
	spin:	relativity
	m = 0 special: helicity	
CPT		existence and
		"anti-ness" of
		antiparticles;
		honorary Lorentz
		transformation;
		presumably exact
$CP \ (\approx T)$	discrete	violated only in
charge parity		complex weak
		processes;
		relevant to cosmological
		matter/antimatter
		asymmetry
		challenge for SUSY
T ($\approx CP$)		theoretical violation
time reversal		only;
		forbids electric dipole
		moments;
		<i>not</i> thermo-paradoxical
Р	discrete	valid for strong and
parity		electromagnetic
		processes;
		"maximal" weak
		violation
C	discrete	valid for strong and
charge conjugation		electromagnetic
		processes;
		"maximal" weak
alactromagnatic gauge	oloctric chargo	violation
invariance	electric charge	no iongituamai
mvariance		protons,
		needs to be exact;
		quantized charge -
		why:

symmetry	conserved quantities	comments
В	baryon number;	valid for strong,
baryon number	counting	electromagnetic
U U		processes;
		theoretical, very feeble
		weak violation
		(instantons);
		no violation observed,
		$\tau_p \ge 10^{33} \text{ yrs.};$
		relevant to unification,
		cosmology
I_3	u - d number;	valid for strong,
third component of	counting	electromagnetic
isospin		processes;
		weakly trashed, but in
→		orderly ways
Ι	rotations $u \leftrightarrow d$	approximate for strong
isospin		interactions;
		electromagnetically and
		weakly trashed, but in
		orderly ways;
		central to nuclear
		physics
chiral $SU(2) \times SU(2)$	approximation	approximate for strong
	$m_u, m_d \sim 0$	interactions;
		spontaneously broken –
		profound theory, useful
		for pion physics;
		electromagnetically and
		weakly trashed, but in
		orderly ways

symmetry	conserved quantities	comments
S	s number:	valid for strong.
strangeness	counting	electromagnetic
0	0	processes;
		weakly trashed, but in
		orderly ways
flavor $SU(3);$	$u \leftrightarrow d \leftrightarrow s$ rotations	very approximate for
"eightfold way"		strong interactions;
		mature form is quark
		model
${\mathcal C}$	c number	similar to S
charm		
\mathcal{B}	b number	similar to S
bottom		
\mathcal{T}	t number	similar to S
top		
L_e	$e + \nu_e$ number	feebly violated in
electron lepton number		neutrino oscillations –
		signature of
		unification?
L_{μ}	$\mu + \nu_{\mu}$ number	feebly violated in
muon lepton number		neutrino oscillations –
		signature of
T	1	unification?
$L_{ au}$	$ au + u_{ au}$ number	feebly violated in
tau lepton number		neutrino oscillations –
		signature of
		theory prefers
$D_e + D_\mu + D_\tau$		violation.
Tehton number		no violation vot
		observed – challenging:
		Majorana noutrinos?
		imajorana neutrinos: