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Spontaneous Symmetry Breaking: General

Spontaneous symmetry breaking is a very common occurrence in many-body systems. Ordi-
nary crystals break translation symmetry down to a discrete subgroup. Ferromagnets break
rotational symmetry. In these and many other cases, the stable solutions of the dynamical
equations, which govern the system, exhibit less symmetry than the equations themselves.

Superfluidity and superconductivity are also closely associated with spontaneous symmetry
breaking, but of a more subtle, intrinsically quantum-mechanical kind. In superfluids – the
classic case being liquid He4 at low temperatures – the symmetry that is broken is the U(1)
phase symmetry associated with conservation of He4 atom number. In superconductors –
the classic case being bad metals at low temperatures – the symmetry that is broken is a
local (gauged) symmetry, associated to electron number, to which photons respond.

Several cases of spontaneous symmetry breaking are important within the standard model.
Two are particularly outstanding.

The approximate chiral symmetry SUL(2) × SU(2)R of QCD, under independent unitary
transformations among the left-handed uL, dL and the right-handed uR, dR helicity states,
was the first case to be analyzed deeply, principally by Nambu (in pre-quark days, using
a rather different language!). This symmetry is not exact, even within QCD, because it
is violated by the non-zero masses of u, d, which flip helicity. Those masses are quite
small, however. Quantitatively, the symmetry breaking SU(2)L × SU(2)R → SU(2)L+R

is predominantly spontaneous. A rich, useful theory of pions and the interactions at low
energies follows from these ideas. The symmetry breaking can also be demonstrated directly,
by numerical solution of the equations of QCD (lattice gauge theory). In this case the broken
symmetry is global1, similar to superfluidity.

The gauge symmetry SU(2)×U(1) is postulated in our theory of electroweak interactions.
We must, however, avoid the massless gauge bosons that unbroken gauge symmetry seems
to imply2. This difficulty is overcome by breaking the symmetry spontaneously. In this
case, with gauge symmetry front and center, the mechanism is similar to superconductivity.

The full particle physics models have extra complications, which can tend to obscure the ba-
sic underlying mechanisms, especially for beginners. Here I will present the basic principles
as simply as possible, and simply sketch how they operate in more complicated situations.

1Actually the chiral symmetry breaking of QCD also breaks electroweak SU(2)×U(1). The effect of this
gauge symmetry breaking, however, is obscured by the much larger breaking associated with the Higgs field
condensation.

2Actually unbroken gauge symmetry does not necessarily imply massless vector bosons, as we learn from
QCD. There are deep connections, amounting almost to identity, between the ideas of gauge confinement and
gauge symmetry “breaking”, but I will not plumb those depths here. When the gauge couplings are weak, it
is appropriate and fruitful to treat the interplay of symmetry breaking and gauge fields perturbatively, and
that is what I’ll do in this course. However I cannot resist mentioning a profound wisecrack of mine, that it
is much more accurate to speak of gauged symmetry breaking, than of gauge symmetry breaking.
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In a separate, subsequent note I’ll spell it out more fully for electroweak SU(2) × U(1)
breaking.

Global U(1) Model (Superfluid)

We consider a complex scalar field φ, with Lagrangian density

L =
1
2
∂µφ∗∂µφ− V (φ)

V (φ) = − µ2

2
φ∗φ+

λ

4
(φ∗φ)2 (1)

It is invariant under the phase symmetry

φ → eiαφ (2)

(Note, however, that we cannot allow space-time dependence in α.)

The minimum energy solutions of Eqn. (1) will be constant is space and time, with

〈φ〉 = veiη

v2 =
µ2

λ
(3)

Here I have put bra-kets around the value of φ, to indicate that there are states in the
quantum theory that realize the symmetry breaking. In this course we’ll proceed heuristi-
cally, but there is no great difficulty in constructing the quantum theory that realizes our
classical anticipations, at least perturbatively in four space-time dimensions3.

Energy minimization does not determine the phase η. Indeed, if a minimum energy state
violates a symmetry of the equations, then its “symmetry transformed” partners will be
different states with the same energy. In other words, we will have a manifold of degenerate
states. That is what we have here, with the different choices of η. Gentle interpolation
among these states, in space and time, will bring in extra gradient energy, but not local
bulk contributions. In the limit of long wavelengths, k → 0, the energy will go to zero.
Given the dispersion relation of relativistic particles, E2 = k2 + M2, we expect that the
quanta of these modes will have zero mass. They are the celebrated Nambu-Goldstone
bosons.

The mathematics bears out that expectation. Let us write

φ = (v + ρ)eiσ/v (4)
3In lower space-time dimensions perturbation theory sometimes breaks down due to accumulation of

long-wavelength fluctuations (infrared catastrophe).
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The kinetic term is then
1
2
∂µρ∂µρ+

1
2

(1 +
ρ

v
)2∂µσ∂µσ (5)

For ρ, it is completely conventional. For σ, the leading terms is conventional, while the
subsequent terms involving ρ/v represent gradient interactions, which are small corrections
as long as the expectation v is much larger than its fluctuation ρ.

The potential does not involve σ at all. We have

V (ρ) = − µ2

2
(v + ρ)2 +

λ

4
(v + ρ)4 = − µ4

4λ
+ µ2ρ2 + µ

√
λρ3 +

λ

4
ρ4 (6)

The constant term does not appear in the equations of motion, so we can throw it away. If,
however, we were including gravity in our treatment, this term would contribute (negatively)
to the density of empty space, also known as the cosmological term or, recently, as dark
matter. The quadratic term corresponds to mass

√
2µ for the ρ quanta, and the remaining

terms some non-linear self-interactions. The σ field is of course massless, as we anticipated
on physical grounds.

In constructing the quantum field theory, even perturbatively, it seems necessary to work
with basic interactions that are polynomial. Thus we should feel pangs of conscience in
using Eqn. (4). We really should use a linearized form, carry out the renormalization, and
then use symmetry on the result. This is possible, although somewhat clumsy. Fortunately,
“It is more blessed to ask forgiveness than permission.”

Gauged U(1) Model (Superconductor)

If we add in a gauge field, so as to make the U(1) phase symmetry local, our Lagrangian
becomes

L = − 1
4
FµνFµν +

1
2
∇µφ∗∇µφ− V (φ)

V (φ) = − µ2

2
φ∗φ+

λ

4
(φ∗φ)2

∇µφ = (∂µ + igAµ)φ (7)

Inserting Eqn. (4) into Eqn. (7), we get a potential exactly as before, while the kinetic term
boils down to

1
2
∂µρ∂µρ+

1
2

(gvAµ + ∂µσ)2(1 +
ρ

v
)2 (8)

together with the Maxwell term. The second term is unconventional, and perhaps rather
frightening at first sight, but it’s actually quite easy to handle, at least heuristically. We
simply define a new gauge field

A′µ ≡ Aµ +
1
gv
∂µσ (9)
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and note that the Maxwell term for A′ has exactly the same form as that for A, since
the “gauge-like” gradient term cancels. At this point the σ field has departed from the
dynamics: It’s been “eaten”.

Upon dropping the primes, for ease of notation, the unconventional term becomes

g2v2

2
AµAµ(1 +

ρ

v
)2 (10)

Eqn. (10) suggests, on the face of it, a mass term of magnitude

MA ≡ gv (11)

together with some nonlinear interactions, from the terms involving ρ, ρ2.

To cement the interpretation of the mass term, let’s consider the equations of motion we get,
by varying with respect to A. We have the usual Maxwell form, with an added contribution,
viz.

0 = − ∂µFµν +M2
AAν = − ∂µ(∂µAν − ∂νAµ) +M2

AAν (12)

Now applying ∂ν to Eqn. (12), we find

M2
A∂

νAν = 0 (13)

With ∂νAν = 0, Eqn. (12) simplifies to

(−∂2 +M2
A)Aν = 0 (14)

We now recognize that each component of A is a massive field with the common mass MA.
They are not all independent, due to Eqn. (13). In fact we have three degrees of freedom,
as we should (for massive spin 1).

More Complex Situations

In more complicated situations, we can meet degeneracy manifold of larger dimension,
starting gauge groups of larger dimension, subgroups of which may remain unbroken. The
general rule, which should seem quite plausible from the preceding, is that if we have a
degeneracy manifold of dimension d, for a broken global symmetry, we will have d massless
Nambu-Goldstone bosons. If we have local gauge symmetry G → H in the equations and
their solution, and a degeneracy manifold of dimension d, we expect that Dim (G)−Dim (H)
of the Nambu-Goldstone bosons get eaten, while the remaining d−Dim (G) + Dim (H) are
physical massless quanta. Of course, this quantity must be non-negative. Additional degrees
of freedom in our scalar fields, that correspond to motion off the degeneracy manifold, will
be ordinary, massive fields.
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