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Majorana-ism

Photons are their own antiparticles. They are described by real-number fields, which simply
change sign under charge conjugation. When Dirac introduced his equation for electrons, it
seemed to involve complex numbers intrinsically. The interpretation of the Dirac equation
was problematic, initially, but when that interpretation matured, that appearance of com-
plex numbers seemed to be a profound, advantageous feature. It was tied up both with the
fact that the electron is charged, and therefore subject to the phase rotations associated
with electromagnetic gauge invariance, and with the existence of positrons. Indeed the elec-
tron field destroys electrons and creates positrons, while its complex (or more accurately,
Hermitean) conjugate does the opposite.

After Pauli suggested the existence of electrically neutral neutrinos, and Fermi made them
the basis of an impressive, quantitative theory of beta decay, it became interesting to re-
consider, whether one could have spin 1

2 particles that are their own antiparticles. Could
one, specifically, have a version of the Dirac equation that involved real fields? This was a
mathematical question asked, and answered, by Majorana.

Hardly anything was known about neutrinos in those days; now we know a lot. But the issue
Majorana’s work, when suitably interpreted, raises, defines a central remaining physical
question concerning neutrinos.

Majorana Basis

In order that the Dirac-type equation

(iγµ∂µ +m)ψ = 0 (1)

support solutions with a real field ψ, we must have that the γ matrices are pure imaginary.
We want, of course, that they should satisfy the Clifford-Dirac algebra

{γµ, γν} = 2 ηµν (2)

and that γ0 is Hermitean while the spatial γj are anti-Hermitean. Here is a purely imaginary
solution to those requirements:

γ0 = σ2 ⊗ σ3

γ1 = iσ1 ⊗ 1
γ2 = iσ2 ⊗ σ2

γ3 = iσ3 ⊗ 1 (3)

I will call a set of γµ-matrices that are purely imaginary, a Majorana basis.
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Chirality and Charge Conjugation

The γ5 matrix used in defining chiral projections is

γ5 ≡ iγ0γ1γ2γ3 (4)

is also pure imaginary in a Majorana basis. The i is not negotiable, since we must require
(γ5)2 = 1. Only then will the projection operators

Π± ≡
1± γ5

2
(5)

satisfy the basic requirement Π2
± = Π±.

Since left-handed fermion fields, by definition, satisfy

Π+ ψL = 0
Π− ψL = ψL (6)

and the Π±, as we have just seen, are intrinsically complex, we cannot have non-trivial real
chiral fermion fields.

Of course, we can use a Majorana basis even for complex ψ fields. The special virtue of such
a basis is that it makes the charge conjugation operation especially transparent. Indeed if
ψ satisfies the free Dirac equation, then so does ψ∗, so we have a symmetry operation of
the simple form

ψ′ → ψ∗ (7)

For the interacting electromagnetic Dirac equation, we must also reverse the sign of Aµ.

In the basic quantization of the electron field, we face the issue of choosing a preferred
“vacuum” state. The standard choice is to choose the charge-conjugation invariant state
of minimal energy. This formulation makes the fictitious nature of the Dirac sea, in this
context, clear. In condensed matter contexts typically we must specify a chemical potential,
and there is no fundamental symmetry between particles and holes.

Note that real (“Majorana”) fields can be invariant, or get multiplied by definite numbers,
under transformations of the kind Eqn. (7). In that sense Majorana fields represent particles
with definite charge conjugation, i.e. particles that are their own antiparticles.

On the other hand1, since
Π∗± = Π∓ (8)

chiral fields transform, by complex conjugation, into fields of the opposite chirality.
1Rueful smile here.
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Quasi-Majorana Pseudo-Chiral Neutrinos

Among the most basic observations on neutrinos are

1. The conservation of separate lepton numbers Le, Lµ, Lτ in most reactions and decays.

2. Neutrinos emitted in decays or reactions have left-handed chirality, while antineutrinos
have right-handed chirality.

3. The violation of these separate quantum numbers when neutrinos are allowed to travel
over large distances (neutrino oscillations).

Neutrino oscillations provide evidence for mass terms that are not diagonal with respect
to the separate lepton numbers, though as yet no observation has revealed violation of the
total Le + Lµ + Lτ . Mass terms, diagonal or not, are incompatible with chiral projections.
Thus the familiar “left-handed neutrino” which particle physicists thought for decades that
they’d been dealing with can only be an approximation. It must have some admixture of
right-handed chirality.

Thus a fundamental question arises: Are these right-handed components of neutrinos some-
thing entirely new – or could they involve the same degrees of freedom we met before, in
antineutrinos?

At first hearing that question might sound quite strange, since neutrinos and anti-neutrinos
have quite different properties. How could there be a piece of the neutrino, that acts like
an antineutrino? But of course if the piece is small enough, it might be compatible with
observations. And if the energy of our neutrinos is large compared to their mass, the
admixture of opposite chirality will be small. Indeed, it is proportional to m/E. In the
phenomenology of neutrino oscillations, and taking into account cosmological constraints,
we are led to masses m < eV , and so in most practical experiments m/E is a very small
parameter.

A more vivid way of posing the question: Are neutrinos and antineutrinos the same particles,
just observed in different states of motion? The observed distinctions might just represent
unusual spin-dependent (or more properly helicity-dependent) interactions.

These questions are usually posed in the cryptic form: Are neutrinos Majorana particles?

Majorana Mass

To put our questions on a firm mathematical basis, the central issue is to formulate how
we can describe a massive spin-1

2 particle using just two (not four) degrees of freedom. We
want the antiparticle to involve the same degrees of freedom as the particle. Concretely, we
want to investigate how the hypothesis

ψR
?= ψ ∗L (9)
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(in a Majorana basis) might be compatible with non-zero mass. Applying a chiral projection
to the Dirac equation in general gives us the form

iγµ∂µψL +MψR = 0 (10)

and so we are led to contemplate

iγµ∂µψL +Mψ ∗L = 0 (11)

(Mathematical/historical aside: If Eqn. (9) holds, we can derive both ψL and ψR by projec-
tion from a single four-component real field, i.e.

ψ ≡ ψL + ψR = ψL + ψ ∗L (12)

This is the link to Majorana’s original idea.)

The appearance of Eqn. (11) is unusual, and we may wonder how it could arise as a field
equation, from a Lagrangian density. Usually we consider mass terms

LM ∝ ψ̄ψ = ψ†γ0ψ (13)

Now if we write everything in terms of ψL, using Eqn. (9), we find

ψ†γ0ψ → (ψL)Tγ0ψL + (ψ ∗L )Tγ0ψ
∗
L (14)

where T denotes transpose. In verifying that these terms are non-trivial, whereas the
remaining cross-terms vanish, it is important to note that γ5 is antisymmetric, i.e., that
it changes sign under transpose. That is true, because γ5 is both Hermitean and pure
imaginary. Varying this form, together with the conventional kinetic term

L ∝ (ψ ∗L )T iγµ∂µψL + h.c. (15)

will give us Eqn. (11).

From any of these perspectives: the basic formation Eqn. (9), the Dirac equation, or the
underlying Lagrangian, we see that the Majorana fermion hypothesis is not compatible
with a phase symmetry for ψL. In the context of the standard model, we cannot support
mass terms that are simply quadratic in fermion fields of the same chirality, as in Eqn. (14),
because they will never be invariant under hypercharge symmetry.

On the other hand if we have a “right-handed neutrino” NR that is invariant under all the
gauge symmetries of the standard model, there is nothing to forbid it having a (Majorana)
mass, even if there is no independent NL.

If we relax the requirement of renormalizability slightly, to allow mass dimension 5 interac-
tions, we can get a (Majorana) mass for the neutrino, without introducing new degrees of
freedom. Indeed, we can have contributions of the form

Lneutrino mass ∝ LaLφ
∗
a L

b
Lφ
∗
b + h.c. (16)

where, as always, L is the left-handed lepton doublet, and φ the Higgs doublet. When we
expand φ around its vacuum expectation value, we get a mass term of the form Eqn. (14)
for the ordinary neutrino, φL → νL.
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Next Steps

1. I have written the equations suppressing flavor dependence. That can be put back in,
straightforwardly. Worthy of remark is that since the Majorana mass term

ψ ρf
L (γ0)ρσMfg ψ

σg
L (17)

where ρ, σ are spinor indices and f, g flavor indices, must be overall antisymmetric in
exchange of the fields, and γ0 is antisymmetric, we must take Mfg symmetric.

2. It is often advantageous, in constructing candidate unified theories with (sponta-
neously broken) symmetries larger than the standard model, to include an NR as
described above. It makes the lepton sector visibly parallel to the quark sector.

3. Because NR can have an “intrinsic” mass, independent of electroweak symmetry
breaking, it is not unreasonable to contemplate that its mass might be very large.
Other considerations, specifically the unification of running couplings in unified the-
ories, strongly endorse this possibility.

4. Normal (invariant) Yukawa couplings of LL to NR through the Higgs field, might be
expected to give us massive neutrinos, with masses similar to the masses of quarks
and charged leptons. However if NR has its own large intrinsic mass, the the effect of
these “ordinary” mass couplings will be to connect us to very high-energy degrees of
freedom (i.e. NR). We get an effect involving only light degrees of freedom in second-
order perturbation theory, with MN appearing as an energy denominator. This is
the essence of the so-called see-saw mechanism for generating neutrino masses. It can
explain, semi-quantitatively, why the observed masses of neutrinos are so very much
smaller than those of quarks and charged leptons.

5. The most direct test of the Majorana neutrino hypothesis, would be to see if pairs
of neutrinos, brought to rest, annihilate one another. Unfortunately, although we are
presumably immersed in a cosmological neutrino background, similar to the microwave
photon background, and these neutrinos should have cooled to near rest, no one has
designed a practical experiment to probe this issue. The only experiments on the
drawing board, which get at these issues, are searches for neutrinoless double beta
decay, as a sign of total lepton number violation.

Condensed Matter: Superconductivity and Majorinos

In the context of superconductivity, Majorana-type mass terms arise very naturally. Indeed,
starting with a four-electron interaction

L ∼ ψ̄ψ̄ψψ (18)
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and allowing the formation of a condensate ∆ ∼ 〈ψψ〉, we get terms of the form

L → ∆∗ψψ + ∆ψ∗ψ∗ (19)

An exciting frontier of current investigation in condensed matter physics and superconduc-
tivity involves a very special kind of Majorana fermion, that is associated to special points
in space and has zero mass. Since, regarded as a particle, it is both exceedingly limited
and exceedingly light, it is naturally to refer to this kind of fermion with the diminutive
“Majorino”. For an introduction to these ideas, see the accompanying paper, which I’ve
attached as a very long appendix, and the references therein.

November 15, 2013 6



MIT-CTP-4481

Algebra of Majorana doubling

Jaehoon Lee and Frank Wilczek
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge MA 02139 USA

(Dated: November 6, 2013)

Motivated by the problem of identifying Majorana mode operators at junctions, we analyze a
basic algebraic structure leading to a doubled spectrum. For general (nonlinear) interactions the
emergent mode creation operator is highly non-linear in the original effective mode operators, and
therefore also in the underlying electron creation and destruction operators. This phenomenon could
open up new possibilities for controlled dynamical manipulation of the modes. We briefly compare
and contrast related issues in the Pfaffian quantum Hall state.

PACS numbers: 74.20.Mn, 02.10.De, 74.81.Fa, 03.65.Vf

Introduction: The existence of Majorana modes in con-
densed matter systems [1–6] is intrinsically interesting, in
that it embodies a qualitatively new and deeply quantum
mechanical phenomenon [7, 8]. It is also possible that
such modes might have useful applications, particularly
in quantum information processing [9, 10]. One feature
that makes Majorana modes useful is that they generate
a doubled spectrum. Repeated doubling generates a huge
Hilbert space of degenerate states, which is the starting
point for possible quantum computational applications.
In this letter, we explore the precise algebraic structure
underlying that degeneracy.

Consider the situation where multiple Majorana modes
come together to form a junction, as might occur in a net-
work of superconducting wires that support a non-trivial
topological phase. Several experimental groups are de-
veloping physical embodiments of Majorana modes, for
eventual use in such complex quantum circuits. (For a
useful sampling of very recent activity, see the collection
of abstracts from the July 12-18 2013 Erice workshop :
[11].) We consider a fundamental issue that arises in an-
alyzing such circuits. For each odd junction of a circuit,
we identify a remarkably simple, explicit non-linear oper-
ator Γ that implements the doubling. We point out inter-
esting algebraic properties of Γ, and emphasize its tight
connection with fermion parity. We find these results, in
their power and simplicity, encouraging for further de-
velopments of technology using Majorana wire circuits.
In particular it should be possible, by incorporating the
effect a very broad class of interactions systematically, to
put the analysis of mode transport through tri-junctions
and Josephson couplings on a more general and rigorous
footing.

Review of Kitaev’s Wire Model: Let us briefly recall
the simplest, yet representative, model for such modes,
Kitaev’s wire segment [12]. We imagine N ordered
sites are available to our electrons, so we have creation
and destruction operators a†j , ak, 1 ≤ j, k ≤ N , with
{aj , ak} = {a†j , a

†
k} = 0 and {a†j , ak} = δjk. The same

commutation relations can be expressed using the her-
mitean and antihermitean parts of the aj , leading to a

Clifford algebra, as follows:

γ2j−1 = aj + a†j

γ2j =
aj − a†j

i
{γk, γl} = 2 δkl. (1)

Now let us compare the Hamiltonians

H0 = − i
N∑

j=1

γ2j−1γ2j (2)

H1 = − i
N−1∑
j=1

γ2jγ2j+1. (3)

Since −iγ2j−1γ2j = 2a†jaj − 1, H0 simply measures the
total occupancy. It is a normal, if unusually trivial, elec-
tron Hamiltonian.
H1 strongly resembles H0 but there are three major

differences. One difference emerges, if we re-express H1

in terms of the aj . We find that it is local in terms of
those variables, in the sense that only neighboring sites
are connected, but that in addition to conventional hop-
ping terms of the type aja

†
j+1 we have terms of the type

ajaj+1, and their hermitean conjugates. The aa type,
which we may call superconductive hopping, does not
conserve electron number, and is characteristic of a su-
perconducting (pairing) state. A second difference grows
out of a similarity: since the algebra Eqn. (1) of the γj

is uniform in j, we can interpret the products γ2jγ2j+1

that appear in H1 in the same fashion that we interpret
the products γ2j−1γ2j that appear in H0, that is as oc-
cupancy numbers. The effective fermions that appear in
these numbers, however, are not the original electrons,
but mixtures of electrons and holes on neighboring sites.

The third and most profound difference is that the op-
erators γ1, γ2N do not appear at all in H1. These are
the Majorana mode operators. They commute with the
Hamiltonian, square to the identity, and anticommute
with each other. The action of γ1 and γ2N on the ground
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state implies a degeneracy of that state, and the corre-
sponding modes have zero energy. Kitaev [12] shows that
similar behavior occurs for a family of Hamiltonians al-
lowing continuous variation of microscopic parameters,
i.e. for a universality class. Within that universality
class one has hermitean operators bL, bR on the two ends
of the wire whose action is exponentially (in N) localized
and commute with the Hamiltonian up to exponentially
small corrections, that satisfy the characteristic relations
b2L = b2R = 1. In principle there is a correction Hamilto-
nian,

Hc ∝ − ibLbR, (4)

that will encourage us to re-assemble bL, bR into an effec-
tive fermion creation-destruction pair, and realize Hc as
its occupation number. But for a long wire and weak in-
teractions we expect the coefficient ofHc to be very small,
since the modes excited by bL, bR are spatially distant,
and for most physical purposes it will be more appropri-
ate to work with the local variables bL, bR.

Algebraic Structure: The following considerations will
appear more pointed if we explain their origin in the fol-
lowing little puzzle. Let us imagine we bring together the
ends of three wires supporting Majorana modes b1, b2, b3.
Thus we have the algebra

{bj , bk} = 2δjk. (5)

The bj do not appear in their separate wire Hamiltonians,
but we can expect to have interactions

Hint. = − i(α b1b2 + β b2b3 + γ b3b1) (6)

which plausibly arise from normal or superconductive
inter-wire electron hopping. We assume here that the
only important couplings among the wires involve the
Majorana modes. This is appropriate if the remaining
modes are gapped and the interaction is weak – for ex-
ample, if we only include effects of resonant tunneling.
We shall relax this assumption in due course.

We might expect, heuristically, that the interactions
cause two Majorana degrees of freedom to pair up to
form a conventional fermion degree of freedom, leaving
one Majorana mode behind.

On the other hand, the algebra in Eqn. (5) can be real-
ized using Pauli σ matrices, in the form bj = σj . In that
realization, we have simply H = ασ3 + β σ1 + γ σ2. But
that Hamiltonian has eigenvalues ±

√
|α|2 + |β|2 + |γ|2,

with neither degeneracy nor zero mode. In fact a similar
problem arises even for “junctions” containing a single
wire, since we could use bR = σ1 (and bL = σ2).

The point is that the algebra of Eqn. (5) is concep-
tually incomplete. It does not incorporate relevant im-
plications of electron number parity, or in other words
electron number modulo two. For the operator

P ≡ (−1)Ne (7)

that implements electron number parity we should have

P 2 = 1 (8)
[P,Heff.] = 0 (9)
{P, bj} = 0. (10)

Eqn. (8) follows directly from the motivating definition.
Eqn. (9) reflects the fundamental constraint that electron
number modulo two is conserved in the theories under
consideration, and indeed under very broad – possibly
universal – conditions. Eqn. (10) reflects, in the context
of [12], that the bj are linear functions of the ak, a

†
l , but is

more general. Indeed, it will persist under any “dressing”
of the bj operators induced by interactions that conserve
P . Below we will see striking examples of this persis-
tence.

The preceding puzzle can now be addressed. Including
the algebra of electron parity operator, we take a concrete
realization of operators as b1 = σ1 ⊗ I, b2 = σ3 ⊗ I,
b3 = σ2 ⊗ σ1 and P = σ2 ⊗ σ3. This choice represents
the algebra Eqns. (5, 8-10). The Hamiltonian represented
in this enlarged space contains doublets at each energy
level. (Related algebraic structures are implicit in [13].
See also [14–17] for more intricate, but model-dependent,
constructions.)

Emergent Majorana Modes: Returning to the abstract
analysis, consider the special operator

Γ ≡ − ib1b2b3. (11)

It satisfies

Γ2 = 1 (12)
[Γ, bj ] = 0 (13)

[Γ, Heff.] = 0 (14)
{Γ, P} = 0. (15)

Eqns. (12, 13) follow directly from the definition, while
Eqn. (14) follows, given Eqn. (13), from the requirement
that Heff. should contain only terms of even degree in the
bis. That requirement, in turn, follows from the restric-
tion of the Hamiltonian to terms even under P . Finally
Eqn. (15) is a direct consequence of Eqn.(10) and the def-
inition of Γ.

This emergent Γ has the characteristic properties of a
Majorana mode operator: It is hermitean, squares to one,
and has odd electron number parity. Most crucially, it
commutes with the Hamiltonian, but is not a function of
the Hamiltonian. We can highlight the relevant structure
by going to a basis where H and P are both diagonal.
Then from Eqn. (15), we see that Γ takes states with
P = ±1 into states of the same energy with P = ∓1.
This doubling applies to all energy eigenstates, not only
the ground state. It is reminiscent of, but differs from,
Kramers doubling. (No antiunitary operation appears,
nor is T symmetry assumed.)
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One also has a linear operator

w ≡ α b3 + β b1 + γ b2 (16)

that commutes with the Hamiltonian. However it is not
independent of Γ, since we have

w = H Γ. (17)

The same considerations apply to a junction support-
ing any odd number p of Majorana mode operators, with

Γ ≡ i
p(p−1)

2

p∏
j=1

γj . (18)

For even p, however, we get a commutator instead of
an anticommutator in Eqn.(15), and the doubling con-
struction fails. For odd p ≥ 5 generally there is no linear
operator, analogous to the w of Eqn. (16), that commutes
with H. (If the Hamiltonian is quadratic, the existence
of a linear zero mode follows from simple linear algebra
– namely, the existence of a zero eigenvalue of an odd-
dimensional antisymmetric matrix, as discussed in earlier
analyses. But for more complex, realistic Hamiltonians,
including nearby electron modes as envisaged below, that
argument is insufficient, even for p = 3. The emergent
operator Γ, on the other hand, always commutes with
the Hamiltonian (Eqns. (14)), even allowing for higher
order contributions such as quartic or higher polynomials
in the bis.)

Now let us revisit the approximation of keeping only
the interactions of the Majorana modes from the sepa-
rate wires. We can in fact, without difficulty, include any
finite number of “ordinary” creation-annihilation modes
from each wire, thus including all degrees of freedom that
overlap significantly with the junction under considera-
tion. These can be analyzed, as in Eqn. (1), into an even
number of additional γ operators, to include with the odd
number of bj . But then the product Γ′ of all these opera-
tors, including both types (and the appropriate power of
i), retains the good properties Eqn. (12) of the Γ operator
we had before.

Now let us briefly discuss how Γ resolves the puzzle in
the previous section. If p ≥ 5, or even at p = 3 with
nearby electron interactions included effects, the emer-
gent zero mode is highly non-linear entangled state in-
volving all the wires that participate at the junction. The
robustness of these conclusions results from the algebraic
properties of Γ we identified.

Pfaffian Vortices: It is interesting to compare the an-
swer to a similar question in another physical context
where Majorana modes arise [4], that is fractional quan-
tum Hall effects of the Pfaffian type. Following the no-
tation and framework of [18], appropriate wave functions
for the state with four quasi-particles at positions a, b, c, d
can be constructed in the form

Ψ1(zj , a, b, c, d)

= Pf
(zj − a)(zj − b)(zk − c)(zk − d) + (j ↔ k)

zj − zk
Ψ0(zj)

Ψ2(zj , a, b, c, d)

= Pf
(zj − a)(zj − c)(zk − b)(zk − d) + (j ↔ k)

zj − zk
Ψ0(zj)

Ψ3(zj , a, b, c, d)

= Pf
(zj − a)(zj − d)(zk − b)(zk − c) + (j ↔ k)

zj − zk
Ψ0(zj)

(19)

where Pf denotes the Pfaffian and Ψ0 contains the stan-
dard Laughlin-Landau factors for filling fraction 1/2.
Within the Pfaffian each quasi-particle acts on one mem-
ber of a pair, and in each of Ψ1,Ψ2,Ψ3 the quasiparticles
themselves are paired off, so that each quasiparticle act
on the same electrons as its mate. In Ψ1 ab and cd are
paired in this sense, and so forth. It can be shown, by
direct calculation, that Ψ1,Ψ2,Ψ3 do not represent three
independent states, since there is an (a, b, c, d-dependent)
linear relation among them. There remain 2 physical
states. This is the number required by a minimal im-
plementation of the nonabelian statistics, which can be
based on the Clifford algebra with four generators [19].

Now formally we can take one of the quasi-particles off
to infinity, and arrive at corresponding wave functions
for three quasiparticles [20]

Ψ̃1(zj , a, b, c)

= Pf
(zj − a)(zj − b)(zk − c) + (j ↔ k)

zj − zk
Ψ0(zj)

Ψ̃2(zj , a, b, c)

= Pf
(zj − a)(zj − c)(zk − b) + (j ↔ k)

zj − zk
Ψ0(zj)

Ψ̃3(zj , a, b, c)

= Pf
(zj − a)(zk − b)(zk − c) + (j ↔ k)

zj − zk
Ψ0(zj).

(20)

We find that there is no further reduction, so there is a
two-dimensional space of states spanned by these wave
functions, as required for a minimal (non-trivial) repre-
sentation of the Clifford algebra with three generators.
In this context, then, it appears that the minimal spinor
representation always suffices: no analogue of the elec-
tron parity operator is implemented.

Comments :

1. The algebraic structure defined by Eqns. (8-10) is
fully non-perturbative. It may be taken as the def-
inition of the universality class supporting Majo-
rana modes. The construction of Γ (in its most
general form) and its consequences Eqns. (12-15)
reproduces that structure, allowing for additional
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interactions, with Γ playing the role of an emergent
b. The definition of Γ, the consequences Eqns. (12-
15), and the deduction of doubling are likewise fully
non-perturbative.

2. If we have a circuit with several junctions j, the
emergent Γj will obey the Clifford algebra

{Γj ,Γk} = 2δjk. (21)

This applies also to junctions with p = 1, i.e. simple
terminals; nor need the circuit be connected.

3. Γ is at the opposite extreme from a single-particle
operator. The corresponding mode is associated
with the product wave function over the modes as-
sociated with the bj . In this sense we have extreme
valence-bond (Heitler-London) as opposed to lin-
ear (Mulliken) orbitals. The contrast is especially
marked, of course, for large p.

4. The fact that interactions modify the Majorana
modes in such a simply analyzed, yet highly non-
trivial fashion suggests new possibilities for circuit
operations, that merit much further consideration.

5. A Clifford algebra on an even number of genera-
tors that commute with the Hamiltonian can be re-
organized, by inverting the procedure of Eqn. (1),
into a supersymmetry algebra. Thus our construc-
tions support an emergent supersymmetry. This
supersymmetry algebra commutes with the Hamil-
tonian, but does not contain it. (Compare [21],
where an emergent supersymmetry, relying on T
symmetry, has been discussed in the context of Ma-
jorana modes.)

6. One can modify the preceding construction by us-
ing, in place of the Γj matrices, matrices of the
type

Γ̃j ∝
√
H Γj (22)

to achieve a closed supersymmetry algebra, now in-
cluding the Hamiltonian in the anticommutators.
One could also consider more elaborate construc-
tion, in which pieces of the total Hamiltonian are

assigned to different Γj , exploiting locality condi-
tions among the underlying a operators to insure
appropriate anticommutators. Of course the

√
H

operators themselves will not be local, except for
specially crafted H.
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